2,878 research outputs found

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs

    Computing largest circles separating two sets of segments

    Get PDF
    A circle CC separates two planar sets if it encloses one of the sets and its open interior disk does not meet the other set. A separating circle is a largest one if it cannot be locally increased while still separating the two given sets. An Theta(n log n) optimal algorithm is proposed to find all largest circles separating two given sets of line segments when line segments are allowed to meet only at their endpoints. In the general case, when line segments may intersect Ω(n2)\Omega(n^2) times, our algorithm can be adapted to work in O(n alpha(n) log n) time and O(n \alpha(n)) space, where alpha(n) represents the extremely slowly growing inverse of the Ackermann function.Comment: 14 pages, 3 figures, abstract presented at 8th Canadian Conference on Computational Geometry, 199

    Geometric Rounding and Feature Separation in Meshes

    Full text link
    Geometric rounding of a mesh is the task of approximating its vertex coordinates by floating point numbers while preserving mesh structure. Geometric rounding allows algorithms of computational geometry to interface with numerical algorithms. We present a practical geometric rounding algorithm for 3D triangle meshes that preserves the topology of the mesh. The basis of the algorithm is a novel strategy: 1) modify the mesh to achieve a feature separation that prevents topology changes when the coordinates change by the rounding unit; and 2) round each vertex coordinate to the closest floating point number. Feature separation is also useful on its own, for example for satisfying minimum separation rules in CAD models. We demonstrate a robust, accurate implementation

    Searching for integrable Hamiltonian systems with Platonic symmetries

    Full text link
    In this paper we try to find examples of integrable natural Hamiltonian systems on the sphere S2S^2 with the symmetries of each Platonic polyhedra. Although some of these systems are known, their expression is extremely complicated; we try here to find the simplest possible expressions for this kind of dynamical systems. Even in the simplest cases it is not easy to prove their integrability by direct computation of the first integrals, therefore, we make use of numerical methods to provide evidences of integrability; namely, by analyzing their Poincar\'e sections (surface sections). In this way we find three systems with platonic symmetries, one for each class of equivalent Platonic polyhedra: tetrahedral, exahedral-octahedral, dodecahedral-icosahedral, showing evidences of integrability. The proof of integrability and the construction of the first integrals are left for further works. As an outline of the possible developments if the integrability of these systems will be proved, we show how to build from them new integrable systems in dimension three and, from these, superintegrable systems in dimension four corresponding to superintegrable interactions among four points on a line, in analogy with the systems with dihedral symmetry treated in a previous article. A common feature of these possibly integrable systems is, besides to the rich symmetry group on the configuration manifold, the partition of the latter into dynamically separated regions showing a simple structure of the potential in their interior. This observation allows to conjecture integrability for a class of Hamiltonian systems in the Euclidean spaces.Comment: 22 pages; 4 figure
    • …
    corecore