4 research outputs found

    On the maximal number of real embeddings of spatial minimally rigid graphs

    Get PDF
    The number of embeddings of minimally rigid graphs in RD\mathbb{R}^D is (by definition) finite, modulo rigid transformations, for every generic choice of edge lengths. Even though various approaches have been proposed to compute it, the gap between upper and lower bounds is still enormous. Specific values and its asymptotic behavior are major and fascinating open problems in rigidity theory. Our work considers the maximal number of real embeddings of minimally rigid graphs in R3\mathbb{R}^3. We modify a commonly used parametric semi-algebraic formulation that exploits the Cayley-Menger determinant to minimize the {\em a priori} number of complex embeddings, where the parameters correspond to edge lengths. To cope with the huge dimension of the parameter space and find specializations of the parameters that maximize the number of real embeddings, we introduce a method based on coupler curves that makes the sampling feasible for spatial minimally rigid graphs. Our methodology results in the first full classification of the number of real embeddings of graphs with 7 vertices in R3\mathbb{R}^3, which was the smallest open case. Building on this and certain 8-vertex graphs, we improve the previously known general lower bound on the maximum number of real embeddings in R3\mathbb{R}^3

    On the maximal number of real embeddings of minimally rigid graphs in R2\mathbb{R}^2, R3\mathbb{R}^3 and S2S^2

    Get PDF
    Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space Rd\mathbb{R}^d or on a sphere and which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings. In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in R3\mathbb{R}^3. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in R2\mathbb{R}^2 and R3\mathbb{R}^3, while in the case of S2S^2 we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018 (Bartzos et al, 2018)

    On the Maximal Number of Real Embeddings of Spatial Minimally Rigid Graphs

    No full text
    The number of embeddings of minimally rigid graphs in RD is (by definition) finite, modulo rigid transformations, for every generic choice of edge lengths. Even though various approaches have been proposed to compute it, the gap between upper and lower bounds is still enormous. Specific values and its asymptotic behavior are major and fascinating open problems in rigidity theory. Our work considers the maximal number of real embeddings of minimally rigid graphs in R-3. We modify a commonly used parametric semi-algebraic formulation that exploits the CayleyMenger determinant to minimize the a priori number of complex embeddings, where the parameters correspond to edge lengths. To cope with the huge dimension of the parameter space and find specializations of the parameters that maximize the number of real embeddings, we introduce a method based on coupler curves that makes the sampling feasible for spatial minimally rigid graphs. Our methodology results in the first full classification of the number of real embeddings of graphs with 7 vertices in R-3, which was the smallest open case. Building on this and certain 8-vertex graphs, we improve the previously known general lower bound on the maximum number of real embeddings in R-3
    corecore