2,857 research outputs found

    Dependence of ablative ability of high-intensity focused ultrasound cavitation-based histotripsy on mechanical properties of agar

    Get PDF
    Cavitation-based histotripsy uses high-intensity focused ultrasound at low duty factor to create bubble clouds inside tissue to liquefy a region, and provides better fidelity to planned lesion coordinates and the ability to perform real-time monitoring. The goal of this study was to identify the most important mechanical properties for predicting lesion dimensions, among these three: Young\u27s modulus, bending strength, and fracture toughness. Lesions were generated inside tissue-mimicking agar, and correlations were examined between the mechanical properties and the lesion dimensions, quantified by lesion volume and by the width and length of the equivalent bubble cluster. Histotripsy was applied to agar samples with varied properties. A cuboid of 4.5mm width (lateral to focal plane) and 6mm depth (along beam axis) was scanned in a raster pattern with respective step sizes of 0.75 and 3mm. The exposure at each treatment location was either 15, 30, or 60s. Results showed that only Young\u27s modulus influenced histotripsy\u27s ablative ability and was significantly correlated with lesion volume and bubble cluster dimensions. The other two properties had negligible effects on lesion formation. Also, exposure time differentially affected the width and depth of the bubble cluster volume

    Labview controlled study of the propagation properties of ultrasound in synthetic fog environment

    Get PDF
    Diagnostic ultrasound employs pulsed, high frequency sound waves that are reflected back from body tissues and processed by ultrasound receivers to create characteristic images in varied applications such as cardiology, obstetrics and gynecology neurology and urology. Ultrasound intensity is primarily affected by the changes in acoustic impedance of the medium. Literature on ultrasound indicates that the propagation of ultrasound increases gradually as the density increases from air to water. Such studies have been confined to only the three states of matter and have never discussed a fog medium. The primary objective of this thesis study was to design a system in order to control the ultrasound transceivers in an artificially created fog atmosphere. The ultimate objective of this study is to construct a complete Fog Imaging System , where a human subject can be completely scanned without the help of any conductive gel. The software controls the generation of synthetic fog atmosphere and the sequential triggering of ultrasound transducers. Reliability and accuracy of the data acquired was tested and verified. Densities versus intensity charts were drawn and the intensity of ultrasound was found to decrease with increasing densities of fog

    Analytical techniques and instrumentation: A compilation

    Get PDF
    Technical information is presented covering the areas of: (1) analytical instrumentation useful in the analysis of physical phenomena; (2) analytical techniques used to determine the performance of materials; and (3) systems and component analyses for design and quality control

    Vocal fold vibratory and acoustic features in fatigued Karaoke singers

    Get PDF
    Session 3aMU - Musical Acoustics and Speech Communication: Singing Voice in Asian CulturesKaraoke is a popular singing entertainment particularly in Asia and is gaining more popularity in the rest of world. In Karaoke, an amateur singer sings with the background music and video (usually guided by the lyric captions on the video screen) played by Karaoke machine, using a microphone and an amplification system. As the Karaoke singers usually have no formal training, they may be more vulnerable to vocal fatigue as they may overuse and/or misuse their voices in the intensive and extensive singing activities. It is unclear whether vocal fatigue is accompanied by any vibration pattern or physiological changes of vocal folds. In this study, 20 participants aged from 18 to 23 years with normal voice were recruited to participate in an prolonged singing task, which induced vocal fatigue. High speed laryngscopic imaging and acoustic signals were recorded before and after the singing task. Images of /i/ phonation were quantitatively analyzed using the High Speed Video Processing (HSVP) program (Yiu, et al. 2010). It was found that the glottis became relatively narrower following fatigue, while the acoustic signals were not sensitive to measure change following fatigue. © 2012 Acoustical Society of Americapublished_or_final_versio

    How sonoporation disrupts cellular structural integrity: morphological and cytoskeletal observations

    Get PDF
    Posters: no. 1Control ID: 1672429OBJECTIVES: In considering sonoporation for drug delivery applications, it is essential to understand how living cells respond to this puncturing force. Here we seek to investigate the effects of sonoporation on cellular structural integrity. We hypothesize that the membrane morphology and cytoskeletal behavior of sonoporated cells under recovery would inherently differ from that of normal viable cells. METHODS: A customized and calibrated exposure platform was developed for this work, and the ZR-75-30 breast carcinoma cells were used as the cell model. The cells were exposed to either single or multiple pulses of 1 MHz ultrasound (pulse length: 30 or 100 cycles; PRF: 1kHz; duration: up to 60s) with 0.45 MPa spatial-averaged peak negative pressure and in the presence of lipid-shelled microbubbles. Confocal microscopy was used to examine insitu the structural integrity of sonoporated cells (identified as ones with exogenous fluorescent marker internalization). For investigations on membrane morphology, FM 4-64 was used as the membrane dye (red), and calcein was used as the sonoporation marker (green); for studies on cytoskeletal behavior, CellLight (green) and propidium iodide (red) were used to respectively label actin filaments and sonoporated cells. Observation started from before exposure to up to 2 h after exposure, and confocal images were acquired at real-time frame rates. Cellular structural features and their temporal kinetics were quantitatively analyzed to assess the consistency of trends amongst a group of cells. RESULTS: Sonoporated cells exhibited membrane shrinkage (decreased by 61% in a cell’s cross-sectional area) and intracellular lipid accumulation (381% increase compared to control) over a 2 h period. The morphological repression of sonoporated cells was also found to correspond with post-sonoporation cytoskeletal processes: actin depolymerization was observed as soon as pores were induced on the membrane. These results show that cellular structural integrity is indeed disrupted over the course of sonoporation. CONCLUSIONS: Our investigation shows that the biophysical impact of sonoporation is by no means limited to the induction of membrane pores: e.g. structural integrity is concomitantly affected in the process. This prompts the need for further fundamental studies to unravel the complex sequence of biological events involved in sonoporation.postprin

    Dissipation and detonation of shock waves in lipid monolayers

    Full text link
    Lipid interfaces not only compartmentalize but also connect different reaction centers within a cell architecture. These interfaces have well defined specific heats and compressibilities, hence energy can propagate along them analogous to sound waves. Lipid monolayers prepared at the air-water interface of a Langmuir trough present an excellent model system to study such propagations. Here we propose that recent observations of two-dimensional shock waves observed in lipid monolayers also provide the evidence for the detonation of shock waves at such interfaces, i.e. chemical energy stored in the interface can be absorbed by a propagating shock front reinforcing it in the process. To this end, we apply the classical theory in shock waves and detonation in the context of a lipid interface and its thermodynamic state. Based on these insights it is claimed that the observed self-sustaining waves in lipid monolayers represent a detonation like phenomena that utilizes the latent heat of phase transition of the lipids. However, the general nature of these equations allows that other possible sources of chemical energy can contribute to the propagating shock wave in a similar manner. Consequently, the understanding is applied to the nerve pulse propagation that is believed to represent a similar phenomenon, to obtain a qualitative understanding of the pressure and temperature dependence of amplitude and threshold for action potentials. While we mainly discuss the case of a stable detonation, the problem of initiation of detonation at interfaces and corresponding heat exchange is briefly discussed, which also suggests a role for thunder like phenomena in pulse initiation.Comment: 6 Figure

    A study on the change in plasma membrane potential during sonoporation

    Get PDF
    Posters: no. 4Control ID: 1680329OBJECTIVES: There has been validated that the correlation of sonoporation with calcium transients is generated by ultrasound-mediated microbubbles activity. Besides calcium, other ionic flows are likely involved in sonoporation. Our hypothesis is the cell electrophysiological properties are related to the intracellular delivery by ultrasound and microbubbles. In this study, a real-time live cell imaging platform is used to determine whether plasma membrane potential change is related to the sonoporation process at the cellular level. METHODS: Hela cells were cultured in DMEM supplemented with 10% FBS in Opticell Chamber at 37 °C and 5% CO2, and reached 80% confluency before experiments. The Calcein Blue-AM, DiBAC4(3) loaded cells in the Opticell chamber filled with PI solution and Sonovue microbubbles were immerged in a water tank on a inverted fluorescence microscope. Pulsed ultrasound (1MHz freq., 20 cycles, 20Hz PRF, 0.2-0.5MPa PNP) was irradiated at the angle of 45° to the region of interest for 1s.The real-time fluorescence imaging for different probes was acquired by a cooled CCD camera every 20s for 10min. The time-lapse fluorescence images were quantitatively analyzed to evaluate the correlation of cell viability, intracellular delivery with plasma membrane potential change. RESULTS: Our preliminary data showed that the PI fluorescence, which indicated intracellular delivery, was immediately accumulated in cells adjacent to microbubbles after exposure, suggesting that their membranes were damaged by ultrasound-activated microbubbles. However, the fluorescence reached its highest level within 4 to 6 minutes and was unchanged thereafter, indicating the membrane was gradually repaired within this period. Furthermore, using DIBAC4(3), which detected the change in the cell membrane potential, we found that the loss of membrane potential might be associated with intracellular delivery, because the PI fluorescence accumulation was usually accompanied with the change in DIBAC4 (3) fluorescence. CONCLUSIONS: Our study suggests that there may be a linkage between the cell membrane potential change and intracellular delivery mediated by ultrasound and microbubbles. We also suggest that other ionic flows or ion channels may be involved in the cell membrane potential change in sonoporation. Further efforts to explore the cellular mechanism of this phenomenon will improve our understanding of sonoporation.postprin

    Developmental delays and subcellular stress as downstream effects of sonoporation

    Get PDF
    Posters: no. 2Control ID: 1672434OBJECTIVES: The biological impact of sonoporation has often been overlooked. Here we seek to obtain insight into the cytotoxic impact of sonoporation by gaining new perspectives on anti-proliferative characteristics that may emerge within sonoporated cells. We particularly focused on investigating the cell-cycle progression kinetics of sonoporated cells and identifying organelles that may be stressed in the recovery process. METHODS: In line with recommendations on exposure hardware design, an immersion-based ultrasound platform has been developed. It delivers 1 MHz ultrasound pulses (100 cycles; 1 kHz PRF; 60 s total duration) with 0.45 MPa peak negative pressure to a cell chamber that housed HL-60 leukemia cells and lipid-shelled microbubbles at a 10:1 cell-tobubble ratio (for 1e6/ml cell density). Calcein was used to facilitate tracking of sonoporated cells with enhanced uptake of exogenous molecules. The developmental trend of sonoporated cells was quantitatively analyzed using BrdU/DNA flow cytometry that monitors the cell population’s DNA synthesis kinetics. This allowed us to measure the temporal progression of DNA synthesis of sonoporated cells. To investigate whether sonoporation would upset subcellular homeostasis, post-exposure cell samples were also assayed for various proteins using Western blot analysis. Analysis focus was placed on the endoplasmic reticulum (ER): an important organelle with multi-faceted role in cellular functioning. The post-exposure observation time spanned between 0-24 h. RESULTS: Despite maintaining viability, sonoporated cells were found to exhibit delays in cell-cycle progression. Specifically, their DNA synthesis time was lengthened substantially (for HL-60 cells: 8.7 h for control vs 13.4 h for the sonoporated group). This indicates that sonoporated cells were under stress: a phenomenon that is supported by our Western blot assays showing upregulation of ER-resident enzymes (PDI, Ero1), ER stress sensors (PERK, IRE1), and ER-triggered pro-apoptotic signals (CHOP, JNK). CONCLUSIONS: Sonoporation, whilst being able to facilitate internalization of exogenous molecules, may inadvertently elicit a cellular stress response. These findings seem to echo recent calls for reconsideration of efficiency issues in sonoporation-mediated drug delivery. Further efforts would be necessary to improve the efficiency of sonoporation-based biomedical applications where cell death is not desirable.postprin
    • …
    corecore