51 research outputs found

    A Lower Bound on the List-Decodability of Insdel Codes

    Full text link
    For codes equipped with metrics such as Hamming metric, symbol pair metric or cover metric, the Johnson bound guarantees list-decodability of such codes. That is, the Johnson bound provides a lower bound on the list-decoding radius of a code in terms of its relative minimum distance δ\delta, list size LL and the alphabet size q.q. For study of list-decodability of codes with insertion and deletion errors (we call such codes insdel codes), it is natural to ask the open problem whether there is also a Johnson-type bound. The problem was first investigated by Wachter-Zeh and the result was amended by Hayashi and Yasunaga where a lower bound on the list-decodability for insdel codes was derived. The main purpose of this paper is to move a step further towards solving the above open problem. In this work, we provide a new lower bound for the list-decodability of an insdel code. As a consequence, we show that unlike the Johnson bound for codes under other metrics that is tight, the bound on list-decodability of insdel codes given by Hayashi and Yasunaga is not tight. Our main idea is to show that if an insdel code with a given Levenshtein distance dd is not list-decodable with list size LL, then the list decoding radius is lower bounded by a bound involving LL and dd. In other words, if the list decoding radius is less than this lower bound, the code must be list-decodable with list size LL. At the end of the paper we use such bound to provide an insdel-list-decodability bound for various well-known codes, which has not been extensively studied before

    Synchronization Strings: Explicit Constructions, Local Decoding, and Applications

    Full text link
    This paper gives new results for synchronization strings, a powerful combinatorial object that allows to efficiently deal with insertions and deletions in various communication settings: \bullet We give a deterministic, linear time synchronization string construction, improving over an O(n5)O(n^5) time randomized construction. Independently of this work, a deterministic O(nlog2logn)O(n\log^2\log n) time construction was just put on arXiv by Cheng, Li, and Wu. We also give a deterministic linear time construction of an infinite synchronization string, which was not known to be computable before. Both constructions are highly explicit, i.e., the ithi^{th} symbol can be computed in O(logi)O(\log i) time. \bullet This paper also introduces a generalized notion we call long-distance synchronization strings that allow for local and very fast decoding. In particular, only O(log3n)O(\log^3 n) time and access to logarithmically many symbols is required to decode any index. We give several applications for these results: \bullet For any δ0\delta0 we provide an insdel correcting code with rate 1δϵ1-\delta-\epsilon which can correct any O(δ)O(\delta) fraction of insdel errors in O(nlog3n)O(n\log^3n) time. This near linear computational efficiency is surprising given that we do not even know how to compute the (edit) distance between the decoding input and output in sub-quadratic time. We show that such codes can not only efficiently recover from δ\delta fraction of insdel errors but, similar to [Schulman, Zuckerman; TransInf'99], also from any O(δ/logn)O(\delta/\log n) fraction of block transpositions and replications. \bullet We show that highly explicitness and local decoding allow for infinite channel simulations with exponentially smaller memory and decoding time requirements. These simulations can be used to give the first near linear time interactive coding scheme for insdel errors

    Improved Asymptotic Bounds for Codes Correcting Insertions and Deletions

    Full text link
    This paper studies the cardinality of codes correcting insertions and deletions. We give an asymptotically improved upper bound on code size. The bound is obtained by utilizing the asymmetric property of list decoding for insertions and deletions.Comment: 9 pages, 2 fugure
    corecore