460 research outputs found

    Methods of visualisation

    Get PDF

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    METAMERISM INDEX OF LED LIGHT ON HALFTONE COLOUR IMAGES

    Get PDF
    Skin face detection in photo imaging, is an important component of systems for detecting similarities in visual perception, tracing faces through illumination and metamerism. This paper presents an evaluation of the skin perception under standardized conditions of varied light sources: cool-white fluorescent “store light”, 6500K fluorescent “daylight”, and incandescent “home light”, Led light 6500 K, 2700K, 4000K CCT. In cases where the discrepancy is large, the resulting index of metamerism can be misleading. A small index of metamerism and a large change of color under illuminant metamerism has a different interpretation than what is perceived. This has been demonstrated through small colour variations in print through CMYK colors. The implication is that particular indices of metameric should only account for a limited range under different light conditions. The method used in this paper is based on visual perception, which aim to work with a wide variety of individuals, under varying lighting conditions under the influence of standard daylight, but in this case we also used the Led light 6500K correlated colour temperature, and variations of skin color tones, comparing the illuminant metamerism of visual perception based on different reflectance power distributions (SPDs)

    Gaussian-Based Hue Descriptors

    Get PDF
    A robust and accurate hue descriptor that is useful in modeling human color perception and for computer vision applications is explored. The hue descriptor is based on the peak wavelength of a Gaussian-like function (called a wraparound Gaussian) and is shown to correlate as well as CIECAM02 hue to the hue designators of papers from the Munsell and Natural Color System color atlases and to the hue names found in Moroney’s Color Thesaurus. The new hue descriptor is also shown to be significantly more stable under a variety of illuminants than CIECAM02. The use of wraparound Gaussians as a hue model is similar in spirit to the use of subtractive Gaussians proposed by Mizokami et al., but overcomes many of their limitations

    Methods of spectral reflectance reconstruction for a sinarback 54 digital camera

    Get PDF
    There is an urgent need to build digital image databases with adequate colorimetric accuracy for museums, achieves and libraries. Traditional colorimetric imaging suffers from the possibilities of metameric problem, while spectral imaging can facilitate accurate tristimulus estimation and possibilities for spectral reconstruction of each pixel. Spectral image archives can be used to render accurate images both spectrally and colorimetrically to the original target for any illuminant and observer. The most convenient and practical capture system for spectral imaging combines a commercial trichromatic camera with two absorption filters to define image spectrally. Two images were taken for each target; so six-channel multichannel images were obtained. Three methods of spectral color reproduction were evaluated: pseudoinverse method, canonical correlation regression (CCR), and Matrix R method. The CCR method can obtain the highest spectral accuracy among these methods, just because it incorporates fifteen cross product terms in the simulation. The Matrix R method can reach the same spectral accuracy as the pseudoinverse method, and the spectral accuracy of both methods could be improved if they also use the same cross product terms. On the other hand, the Matrix R can achieve the best colorimetric accuracy for a certain combination of illuminant and observer. Thus, the Matrix R is a very promising method for achieving artwork images with sufficient spectral and colorimetric accuracy

    Empirical evidence for unique hues?

    Get PDF
    Red, green, blue, yellow, and white have been distinguished from other hues as unique. We present results from two experiments that undermine existing behavioral evidence to separate the unique hues from other colors. In Experiment 1 we used hue scaling, which has often been used to support the existence of unique hues, but has never been attempted with a set of non-unique primaries. Subjects were assigned to one of two experimental conditions. In the "unique" condition, they rated the proportions of red, yellow, blue, and green that they perceived in each of a series of test stimuli. In the "intermediate" condition, they rated the proportions of teal, purple, orange, and lime. We found, surprisingly, that results from the two conditions were largely equivalent. In Experiment 2, we investigated the effect of instruction on subjects' settings of unique hues. We found that altering the color terms given in the instructions to include intermediate hues led to significant shifts in the hue that subjects identified as unique. The results of both experiments question subjects' abilities to identify certain hues as unique

    Kirschmann's Fourth Law

    Get PDF
    Kirschmann's Fourth Law states that the magnitude of simultaneous color contrast increases with the saturation of the inducing surround, but that the rate of increase reduces as saturation increases. Others since Kirschmann have agreed and disagreed. Here we show that the form of the relationship between simultaneous color contrast and inducer saturation depends on the method of measurement. Functions were measured by four methods: (i) asymmetric matching with a black surround, (ii) asymmetric matching with a surround metameric to equal energy white, (iii) dichoptic matching, and (iv) nulling an induced sinusoidal modulation. Results from the asymmetric matching conditions agreed with Kirschmann, whereas results from nulling and from dichoptic matching showed a more linear increase in simultaneous contrast with the saturation of the inducer. We conclude that the method certainly affects the conclusions reached, and that there may not be any "fair" way of measuring simultaneous contrast

    Prototype software for colorant formulation using Gamblin conservation colors

    Get PDF
    When selecting pigments from a large set for restorative inpainting, it can often be challenging to create a mixture that will provide an exact match to the original artwork under a range of viewing and illumination conditions. In this research, a prototype computer program was developed that will aid the user by providing a color match and paint recipe that exhibits minimal metamerism when compared to the original artwork. The Gamblin Conservation Colors, a set of 43 colorants specially formulated for inpainting, were characterized in terms of their optical properties, absorption and scattering, according to Kubelka-Munk turbid media theory. Formulations were made using traditional spectrophotometric measurements and image-based measurements. The multispectral imaging system consisted of a trichromatic CFA camera coupled with two absorption filters; spectral reflectance data for each pixel location was estimated with a transformation based on calibration target images. Three targets were used for testing formulation accuracy: a target consisting of mixtures of Gamblin Conservation Colors, and two oil paintings. Pigment selection was reasonably successful, and good predictions resulted from both measurement techniques, but for more complex tasks such as pigment identification, a more rigorous colorant characterization approach may be needed. Predictions from image-based measurements were generally less accurate, and improvements in the camera model would likely remedy this. It is expected that this software will be of assistance to conservators by simplifying the process of selecting from a large set of available pigments, as well as reducing the possibility of damage to painted surfaces in cases where direct measurements are impractical. The open source nature of the software provides the opportunity for changes and addition of features in the future
    • …
    corecore