23 research outputs found

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=∑v∈V(G)deg(v)⋅ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    Spectral properties of digraphs with a fixed dichromatic number

    Get PDF

    The A<sub>α</sub> spectral moments of digraphs with a given dichromatic number

    Get PDF
    The Aα-matrix of a digraph G is defined as Aα(G)=αD+(G)+(1−α)A(G), where α∈[0,1), D+(G) is the diagonal outdegree matrix and A(G) is the adjacency matrix. The k-th Aα spectral moment of G is defined as ∑i=1 nλαi k, where λαi are the eigenvalues of the Aα-matrix of G, and k is a nonnegative integer. In this paper, we obtain the digraphs which attain the minimal and maximal second Aα spectral moment (also known as the Aα energy) within classes of digraphs with a given dichromatic number. We also determine sharp bounds for the third Aα spectral moment within the special subclass which we define as join digraphs. These results are related to earlier results about the second and third Laplacian spectral moments of digraphs.</p

    Spectral redemption: clustering sparse networks

    Get PDF
    Spectral algorithms are classic approaches to clustering and community detection in networks. However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases completely failing to detect communities even when other algorithms such as belief propagation can do so. Here we introduce a new class of spectral algorithms based on a non-backtracking walk on the directed edges of the graph. The spectrum of this operator is much better-behaved than that of the adjacency matrix or other commonly used matrices, maintaining a strong separation between the bulk eigenvalues and the eigenvalues relevant to community structure even in the sparse case. We show that our algorithm is optimal for graphs generated by the stochastic block model, detecting communities all the way down to the theoretical limit. We also show the spectrum of the non-backtracking operator for some real-world networks, illustrating its advantages over traditional spectral clustering.Comment: 11 pages, 6 figures. Clarified to what extent our claims are rigorous, and to what extent they are conjectures; also added an interpretation of the eigenvectors of the 2n-dimensional version of the non-backtracking matri
    corecore