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Preface

This thesis focuses on the study of the spectral properties of directed graphs
(digraphs for short) with a fixed dichromatic number. This study involves
different types of matrices associated with the digraph, such as the Laplacian
matrix, the Aα matrix and the eccentricity matrix. The content of the thesis is
based on the research that the author performed when she was working as
a joint PhD student at Northwestern Polytechnical University (NPU) and the
University of Twente (UT).

After the introductory chapter (Chapter 1), the reader will find four closely
related technical chapters (Chapters 2–5), each of which has the structure of
a journal paper. Chapters 2 and 3 focus on the spectral moments of digraphs
with a fixed dichromatic number, involving the Laplacian matrix and the Aα
matrix. Chapters 4 and 5 focus on the spectral radius of digraphs with a fixed
dichromatic number, involving the Aα matrix and the eccentricity matrix.

In Chapter 2, our main purpose is to characterize the digraphs which attain
the minimal and maximal Laplacian energy within classes of digraphs with a
fixed dichromatic number. In Chapter 3, we extend the results about Laplacian
spectral moments we obtained in Chapter 2 to Aα spectral moments. In our
main result of Chapter 4, we characterize the digraph which has the maximal
Aα spectral radius among all digraphs with a fixed dichromatic number, by
using the equitable quotient matrix. In Chapter 5, we mainly obtain lower
bounds for the eccentricity spectral radius among all join digraphs with a
fixed dichromatic number.

vii
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Chapter 1

Introduction

Before giving some essential terminology and notation related to (di)graphs
in Section 1.1 and related to matrices and spectral properties in Section 1.2,
we start with a brief introduction, including some background and motivation
for the presented results.

Graphs are used in many application areas to model and analyze pairwise
relationships between objects. For symmetric relationships this is done by
introducing edges, i.e., unordered pairs of vertices, for any pair of related
objects each of which is represented by a separate vertex. For asymmetric
relationships the model is based on arcs, i.e., ordered pairs of vertices, to
represent the direction of the relationship between the represented objects.
This leads to the mathematical concepts of undirected graphs (or graphs
for short) and directed graphs (or digraphs for short), respectively. We will
introduce digraphs and the relevant terminology more formally in Section 1.1.

Given a graph or digraph, one can define several different types of matrices
associated with the (di)graph, as we will see in Section 1.2. Several important
structural properties of the (di)graph are captured by the spectral properties
of such matrices, i.e., the value of certain concepts involving the eigenvalues
of these matrices. The study of the spectral properties of these matrices and its
consequences for the structural properties of the associated graphs is usually
referred to as spectral graph theory.

Spectral graph theory is a very important research topic in algebraic graph

1
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2 Chapter 1. Introduction

theory and combinatorial matrix theory. It is one of the fourteen topics on
the development of mathematics listed in "Fueling Innovation and Discovery:
The Mathematical Sciences in the 21st Century". Since the publication of the
monograph "Spectra of Graphs" by Cvetković et al. [26] back in 1980, the
field of spectral graph theory has developed rapidly, and has gradually formed
into a relatively complete theoretical system. Since then several monographs
have been published [13,25,27,28,47,68,118].

Spectral graph theory is not only closely related to linear algebra, com-
binatorial matrix theory, discrete mathematics, number theory, group theory
and other branches of mathematics, but also has a wide range of applications
in chemistry, physics, biology, computer science, information science, network
science and many other fields. For example, networks consisting of nodes
and links can be represented by a graph (where the nodes and links are
represented by vertices and edges in the graph, respectively). Networks with
the largest possible eigenvalues (to be defined later) have some remarkable
properties. They deliver messages very quickly, so it is easy to route messages
from one vertex to another. They have no bottlenecks, so they are not disabled
by the failure of a few nodes or links. Also, the size of the spectral radius
(to be defined later) can directly reflect the ability of the network to resist
virus transmission: the smaller the adjacency spectral radius, the stronger the
ability of the network to resist virus transmission. The study of spectral graph
theory has attracted the attention of experts and scholars at home and abroad,
and has become a very active research field in graph theory. The study of
spectral graph theory can not only enrich and perfect its theoretical system,
but also play a role in promoting the development of algebraic graph theory,
combinatorial matrix theory and related fields.

Spectral graph theory mainly studies the properties of graphs related
to the characteristic polynomials, eigenvalues and eigenvectors of matrices
associated with the graph. The most commonly studied graph matrices are
its adjacency matrix, its Laplacian matrix, and its signless Laplacian matrix.
The most commonly studied spectral properties are the spectral radius (the
maximum of the absolute values of the eigenvalues), the k-th spectral moment
(the sum of the k-th powers of the eigenvalues), the spread (the maximum
of the absolute values of the differences between any two eigenvalues), and
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the sum of the k largest eigenvalues. In this thesis, we mainly focus on the
spectral moment (in Chapters 2 and 3) and the spectral radius (in Chapters 4
and 5) of digraphs.

In general, what we call a graph is an undirected graph. An undirected
graph is used to describe a particular relationship between objects, and it
requires that the particular relationship is symmetric. In real life, however,
many relationships are not symmetric, such as the relationship between
winners and losers in a race, the relationship between routes in a traffic
network, or the relationship between processes in engineering. Digraphs form
the natural extension of graphs to reflect the asymmetric relationships among
pairs of objects. This demonstrates the need and practical importance of
studying digraphs.

The matrices of undirected graphs are nonnegative real symmetric matri-
ces, and their eigenvalues are all real numbers. But the matrices of digraphs
are not necessarily symmetric, and their eigenvalues are generally complex
numbers. As a result, the research methods and techniques that are used for
undirected graphs are often difficult to apply to digraphs. As examples we
name the concept of Rayleigh entropy and the Cauchy interlacing theorem,
without going into details. This fact is increasing the difficulty of studying the
spectral properties of digraphs. Therefore, researchers often study the spectral
properties of matrices of digraphs with some given parameters, including
their dichromatic number (the smallest integer r such that the digraph has
a partition of its vertex set into r sets, each inducing an acyclic subdigraph),
their clique number (the maximum number of mutually adjacent vertices),
their girth (the length of a shortest directed cycle), their vertex connectivity
(the minimum number of vertices whose deletion yields the resulting digraph
non-strongly connected), and their arc connectivity (the minimum number of
arcs whose deletion yields the resulting digraph non-strongly connected).

In this thesis, the main parameter involved in our study of the spectral
properties of digraphs is their dichromatic number. This digraph parameter
was introduced 40 years ago by Neumann-Lara [98]. Since then, several
groups of scholars studied the dichromatic number of digraphs and structural
properties related to the dichromatic number of digraphs, see [3, 7, 23, 24,
50, 60, 61, 116, 117]. Bokal et al. [7] introduced the circular chromatic



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 14PDF page: 14PDF page: 14PDF page: 14

4 Chapter 1. Introduction

number of a digraph and showed that the coloring theory for digraphs is
similar to the coloring theory for undirected graphs when independent sets of
vertices are replaced by acyclic sets. Steiner [117] proved that every oriented
graph in which the out-neighborhood of every vertex induces a transitive
tournament can be partitioned into two acyclic induced subdigraphs. Other
groups of researchers have focused on algebraic properties related to the
dichromatic number of digraphs, see [32,43,62,74,78,89,96,132]. The first
connection between the dichromatic number and algebraic properties related
to eigenvalues of digraphs was made by Mohar in [96]. He extended Wilf’s
classical eigenvalue upper bound on the chromatic number of undirected
graphs to the analogue for digraphs in terms of the dichromatic number and
the spectral radius of the adjacency matrix. Lin and Shu [78] characterized
the digraphs with given dichromatic number which have the maximal spectral
radius. Kim et al. [62] provided a new proof of the results by Lin and
Shu [78]. Many of the results in this thesis deal with the algebraic and
structural properties related to the dichromatic number of digraphs.

More in particular, we study the spectral properties (spectral moment or
spectral radius) of digraphs with a fixed dichromatic number, focusing on
different matrices. To be more precise, we focus on the Laplacian matrix in
Chapter 2, the Aα-matrix in Chapters 3 and 4, and the eccentricity matrix in
Chapter 5.

After providing some basic terminology and notation in Section 1.1, we
will introduce the concepts for different digraph matrices in detail in Sec-
tion 1.2, and the research progress with respect to the spectral moment and
spectral radius in Section 1.3. In the later sections of this chapter, we will
recall some known lemmas used for our results, and provide an overview of
our main contributions to the field.

1.1 Terminology and notation

In this section, we introduce some basic terminology and notation. All di-
graphs considered in this thesis are connected digraphs without loops or
multiple arcs, unless otherwise indicated. For terminology and notation not



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

1.1. Terminology and notation 5

defined here, we refer the reader to [8].

For a digraph G, we use V (G) andA (G) to denote the vertex set and arc
set of G, respectively, and we use n= |V (G)| and e = |A (G)| to denote the
order and size of G, respectively. We denote an arc from a vertex u to a vertex
v by (u, v), and we call u the tail and v the head of the arc (u, v).

For two disjoint subdigraphs G1, G2 ⊆ G, we write G1 → G2 if (u, v) ∈
A (G) for every u ∈ V (G1) and v ∈ V (G2), and G19 G2 if (u, v) /∈A (G) for
every u ∈ V (G1) and v ∈ V (G2). We also use G1 7→ G2 to denote G1 → G2

and G29 G1.

For a vertex v ∈ V (G), the outdegree d+G (v) is the number of arcs inA (G)
whose tail is v, while the indegree d−G (v) is the number of arcs inA (G) whose
head is v. We denote by ∆+(G) the maximum outdegree of G, ∆−(G) the
maximum indegree of G, δ+(G) the minimum outdegree of G and δ−(G) the
minimum indegree of G, respectively.

A directed walk π of length ` from vertex u to vertex v in G is a sequence
of vertices π: u = v0, v1, . . . , v` = v, where (vk−1, vk) is an arc of G for any
1≤ k ≤ `. If u = v, then π is called a directed closed walk. If all vertices of the
directed walk π of length ` are distinct, then we call it a directed path, and
denote it by P`+1; a directed closed walk of length ` in which all except the
end vertices are distinct is called a directed cycle, and denoted by C`. We let
c`(v) denote the number of directed closed walks of length ` starting at vertex
v, and c` =

∑

v∈V (G) c`(v) to denote the total number of directed closed walks
of length ` (clearly involving a lot of double counting).

The distance d(u, v) between the vertices u, v ∈ V (G) is defined as the
length (i.e. the number of arcs) of a shortest directed path from u to v. The out-
eccentricity e+(u) of the vertex u of G is defined as e+(u) =max{d(u, v)|v ∈
V (G)}, while the in-eccentricity e−(u) of the vertex u of G is defined as
e−(u) = max{d(v, u)|v ∈ V (G)}. The diameter diam(G) of G is defined as:
diam(G) =max{e+(u)|u ∈ V (G)}=max{e−(u)|u ∈ V (G)}.

A digraph G is acyclic if it has no directed cycles. A vertex set F ⊆ V (G) is
acyclic if its induced subdigraph G[F] in G is acyclic. A partition of V (G) into
r acyclic sets is called an r-coloring of G. Adopting the definition of [98], the
minimum integer r for which there exists an r-coloring of G is the dichromatic
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6 Chapter 1. Introduction

number χ(G) of G.

We next introduce some special classes of digraphs. For a digraph G, the
underlying graph is a graph obtained from G by ignoring the direction on the
arcs of G, i.e., by replacing each arc (u, v) of G with an edge joining u and v
(possibly yielding multiple edges).

A digraph is connected if its underlying graph is connected. A digraph G is
strongly connected if for each u, v ∈ V (G), there is a directed path from u to v
and one from v to u. A strong component of a digraph G is a maximal strongly
connected subdigraph of G.

A directed tree is a digraph obtained from an undirected tree by assigning
a direction to each edge, i.e., a digraph with n vertices and n− 1 arcs whose
underlying graph does not contain any cycles. If n = 1, then the directed tree
is an isolated vertex.

As illustrated in Figure 1.1, an in-tree is a directed tree for which the
outdegree of each vertex is at most one. Hence, an in-tree has exactly one
vertex with outdegree 0, and such a vertex is called the root of the in-tree.

3v2v1v n-1v n
v

2v1v n-2vn-3v

n-1v n
vn

in-tree rooted at  (directed path)v

n-2in-tree rooted at  v

Figure 1.1: Two different in-trees.

As illustrated in Figure 1.2, an out-star
→
K1,n−1 of order n is a directed

tree which has one vertex with outdegree n− 1 and all other vertices with

outdegree 0, while an in-star
←
K1,n−1 of order n is a directed tree which has

one vertex with indegree n− 1 and all other vertices with indegree 0.

Let Bn be a book digraph of order n which V (Bn) = {v1, v2, . . . , vn} and
A (Bn) = {(v1, vn), (v1, vi), (vi , vn)|i = 2,3, . . . , n− 1}, see Figure 1.3.

A tournament is a digraph obtained from an undirected complete graph by
assigning a direction to each edge. A transitive tournament is a tournament G
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1, 1nK -

®

1, 1nK -

¬

Figure 1.2: The out-star
→
K1,n−1 and the in-star

←
K1,n−1.

1
v

2
v

3
v

1n
v

-

n
v

Figure 1.3: The book digraph Bn.

satisfying the following condition: if (u, v) ∈A (G) and (v, w) ∈A (G), then
(u, w) ∈A (G).

Every undirected graph H determines a bidirected graph
↔
H that is obtained

from H by replacing each edge with two oppositely arcs joining the same pair

of vertices. We use
↔
K n to denote the bidirected complete graph of order n,

G =
↔
K n1,n2,...,nr

to denote the bidirected complete r-partite graph, and
↔
C n to

denote the bidirected cycle of order n.

The join of two vertex-disjoint digraphs G1 and G2, denoted by G1 ∨G2, is
the digraph having vertex set V (G1)∪V (G2) and arc setA (G1)∪A (G2)∪
{(u, v), (v, u)|u ∈ V (G1), v ∈ V (G2)}. We use G1∨G2∨· · ·∨Gr as shorthand for
the join G1 ∨ (G2 ∨ (· · · ∨ Gr)) of r ≥ 3 vertex-disjoint digraphs G1, G2, . . . , Gr .

We use Gn,r to denote the set of digraphs of order n with dichromatic
number r. We say that a digraph with dichromatic number r is a join digraph
if it is the join of r acyclic digraphs. In particular, we let

∨r
i=1 V i denote the

join digraph in Gn,r which is isomorphic to V 1 ∨ V 2 ∨ · · · ∨ V r , in which each
V i is an acyclic digraph with ni vertices, and we assume that

∑r
i=1 ni = n.
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8 Chapter 1. Introduction

1.2 Digraphs matrices

As we noted before, several different matrices have been introduced and
studied in the context of spectral properties of digraphs. We will define them
in this section and treat them in more detail in the following subsections. At
the end of this section the reader will find a small example to illustrate these
matrices. Among the mostly studied matrices, we focus on the adjacency
matrix A(G) [11,14,59,106,112,119], the Laplacian matrix L(G) [2,5,107,
110,136], the signless Laplacian matrix Q(G) [10,55,65,72,131], the distance
matrix D(G) [30,44,79,82,129], and the Aα-matrix Aα(G) [4,40,89,130,133].
We refer the interested reader to the following sources for details on other
digraph matrices [53,71,74,128,132].

Let In be a unit matrix of order n and let Jn×m be an all 1-matrix of order
n×m. We use Jn to denote the all 1-matrix of order n× n.

Let M(G) be a square n× n-matrix associated with a digraph G. Then
the characteristic polynomial φM(G)(x) of G (of order n) is φM(G)(x) = |x In−
M(G)|, where | · | denotes the determinant. The roots of φM(G)(x) are the
M(G)-eigenvalues of G. The M(G)-spectrum of G is a multiset consisting
of the M(G)-eigenvalues, denoted by SpecM (G). The eigenvalue of M(G)
with the largest modulus is called the M(G)-spectral radius of G, denoted
by ρM (G) = ρ(M(G)). We next introduce the different digraphs matrices in
detail.

We assume that V (G) = {v1, v2, . . . , vn} and use d+i as shorthand for
d+G (vi).

The adjacency matrix A(G) = (ai j)n×n of G is a (0, 1)-square matrix whose
(i, j)-entry equals 1 if (vi , v j) is an arc of G, and equals 0 otherwise.

The Laplacian matrix L(G) and the signless Laplacian matrix Q(G) of G
are L(G) = D+(G)− A(G) and Q(G) = D+(G) + A(G), respectively, where
D+(G) = diag(d+1 , d+2 , . . . , d+n ) is the diagonal outdegree matrix of G.

The Aα-matrix of G is

Aα(G) = αD+(G) + (1−α)A(G),

where α ∈ [0, 1]. It is clear that the Aα-matrix is a natural common extension



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 19PDF page: 19PDF page: 19PDF page: 19

1.2. Digraphs matrices 9

of the adjacency matrix A(G) = A0(G) and the signless Laplacian matrix
Q(G) = 2A 1

2
(G). Since D+(G) is not very interesting to study, we only consider

α ∈ [0, 1).

Because the concept of distance only makes sense on strongly connected
digraphs, the concepts of distance matrix and eccentricity matrix also only
make sense on strongly connected digraphs. So, whenever we consider
these matrices we implicitly assume that the associated digraphs are strongly
connected, i.e., all distances between pairs of vertices are finite.

The distance matrix D(G) = (di j)n×n of G is a matrix whose (i, j)-entry
equals d(vi , v j), where i, j = 1, 2, . . . , n.

The eccentricity matrix ε(G) of G is obtained from the distance matrix of
G by keeping the largest distances in each row and each column, and leaving
0 in the remaining ones, as follows:

ε(G)i j =







d(vi , v j), if d(vi , v j) =min{e+(vi), e−(v j)},

0, otherwise.

All of the above matrices are nonnegative matrices except for the Laplacian
matrix. As we have seen, the Aα-matrix can be regarded as an extension of the
adjacency matrix and the signless Laplacian matrix. The adjacency matrix and
the eccentricity matrix can be regarded as the two extremes of the distance
matrix, only keeping the smallest and largest distances as entries, respectively,
although they are not extremal in a mathematical sense. The adjacency matrix
is by far the mostly studied digraph matrix. In this thesis we mainly focus
on the spectral properties of the Laplacian matrix, the Aα-matrix and the
eccentricity matrix of digraphs. The reported research has mainly theoretical
value and significance. Next, in each of the following subsections we will give
a short overview of the research progress with respect to the Laplacian matrix,
the Aα-matrix and the eccentricity matrix of digraphs, respectively.
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5
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Figure 1.4: The bicyclic digraph∞[3,3].

We give a simple digraph to illustrate the above matrices. Let∞[3, 3] be
the bicyclic digraph shown in Figure 1.4. Then

A(∞[3,3]) =

















0 1 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
1 0 0 0 0

















,

L(∞[3,3]) =

















2 −1 0 −1 0
0 1 −1 0 0
−1 0 1 0 0
0 0 0 1 −1
−1 0 0 0 1

















,

Aα(∞[3,3]) =

















2α 1−α 0 1−α 0
0 α 1−α 0 0

1−α 0 α 0 0
0 0 0 α 1−α

1−α 0 0 0 α

















,

D(∞[3, 3]) =

















0 1 2 1 2
2 0 1 3 4
1 2 0 2 3
2 3 4 0 1
1 2 3 2 0

















, ε(∞[3, 3]) =

















0 0 2 0 2
2 0 0 3 4
0 0 0 0 3
2 3 4 0 0
0 0 3 0 0

















.
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1.2. Digraphs matrices 11

1.2.1 Laplacian matrix

Within spectral graph theory the Laplacian matrix is well-studied, and it is
known to have nice properties. As an example, the number of occurrences of 0
in its eigenvalues is the number of connected regions of the graph. Moreover,
its smallest non-zero eigenvalue is the algebraic connectivity of the graph.

One of the classic results on the Laplacian matrix is in fact a conjecture
due to Brouwer [13]. In Brouwer’s conjecture it is conjectured that the sum
of the k largest Laplacian eigenvalues of an undirected graph H is

Sk(H)≤ e(H) +
�

k+ 1

2

�

,

for all k = 1,2, . . . , n, where e(H) is the number of edges of H. The general
conjecture is still open, but it has been verified for many special cases. Over
time, Brouwer’s conjecture has resulted in many interesting results [15,33,38,
52,108]. Some scholars have focused on the study of the Laplacian spectral
radius [1, 87, 142], and some on the study of the Laplacian spread [5, 16,
18], among other spectral properties. In this thesis we mainly focus on the
Laplacian energy. We will introduce it by a short historical overview.

Graph energy is one of the main concepts in chemical graph theory, and as
such is the central concept in one of the few chemically motivated branches
in discrete mathematics. Graph energy goes back to the late 1970s, when
it was introduced by Gutman [45] as the sum of the absolute values of the
eigenvalues of the adjacency matrix of a graph. More recently, in 2006, Gut-
man and Zhou [48] and Lazić [66] independently defined different versions
of the Laplacian energy of a graph, where the version of Lazić is defined
as the sum of the squares of the eigenvalues of the Laplacian matrix of the
graph. The latter definition was extended to digraphs in 2010 by Perera and
Mizoguchi [107]. In a paper of 2015 [110], Qi et al. obtained lower and
upper bounds on the Laplacian energy of digraphs and also characterized the
extremal digraphs. Very recently, in a paper of 2020 [136], Yang and Wang
determined the directed trees, unicyclic digraphs and bicyclic digraphs which
attain the maximal and minimal Laplacian energy among all digraphs with n
vertices, respectively.
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12 Chapter 1. Introduction

In this thesis, our main results in Chapter 2 are closely related to and
motivated by the aforementioned results obtained in [110] and [136]. We
consider classes of digraphs with a fixed dichromatic number and obtain the
digraphs which attain the minimal and maximal Laplacian energy among
these classes of digraphs.

1.2.2 Aα-matrix

Research on the Aα-matrix began in 2017, when Nikiforov [99] proposed the
Aα-matrix of an undirected graph H of order n as

Aα(H) = αD(H) + (1−α)A(H),

where A(H) is the adjacency matrix and D(H) is the diagonal degree matrix
of H, and α ∈ [0,1).

Subsequently, several different groups of researchers have studied the
properties of the Aα-matrix of undirected graphs. In 2017, Nikiforov et
al. [100] obtained several results about the Aα-matrices of trees, and estab-
lished upper and lower bounds on the spectral radius of the Aα-matrices
of arbitrary graphs. In 2019, Lin et al. [77] proved that some graphs are
determined by their Aα-spectra. In 2020, Liu et al. [85] presented several
upper and lower bounds on the k-th largest eigenvalue of the Aα-matrix and
characterized the extremal graphs corresponding to some of these obtained
bounds. In 2022, Li and Sun [70] showed that in the set of connected graphs
with fixed order and size, the graphs with the maximum Aα-index are the
nested split graphs (i.e. threshold graphs). More results about the Aα-matrix
of graphs can be found in [12,69,75,76,81,83,86,101].

In 2019, the concept of the Aα-matrix of a graph has been extended to
digraphs by Liu et al. [89]. They also characterized the digraph which has
the maximal Aα spectral radius in Gn,r . In Chapter 4, in one of our main
results we give an alternative approach for characterizing the digraph with
the maximal Aα spectral radius in Gn,r .

In 2020, Xi and Wang [133] established lower bounds on ∆+(G)−ρα(G)
for strongly connected irregular digraphs with given maximum outdegree
∆+(G), involving some other parameters. Here ρα(G) denotes the spectral
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1.2. Digraphs matrices 13

radius of Aα(G). In 2022, Xi et al. [130] determined the digraphs which attain
the maximum (or minimum) Aα spectral radius among all strongly connected
digraphs with given parameters such as the girth, the clique number, the
vertex connectivity or the arc connectivity. Ganie and Baghipur [40] obtained
lower bounds for the spectral radius of Aα(G) in terms of the number of
vertices, arcs and directed closed walks of G. More results regarding the
Aα-matrix of digraphs can be found in [4,37,39,134,139].

It can be observed that the literature about the Aα-matrix of digraphs is not
as rich as it is for the adjacency and Laplacian matrix. This has motivated the
work we will present in Chapters 3 and 4. There we consider the Aα spectral
moment and the Aα spectral radius of digraphs with a fixed dichromatic
number, respectively.

1.2.3 Eccentricity matrix

The eccentricity matrix of a graph was introduced by Randić [113] in 2013
under the name DMAX-matrix, and was renamed the eccentricity matrix by
Wang et al. [120] in 2018.

As we have seen before, the eccentricity matrix of a graph is obtained from
the distance matrix by keeping the largest distances in each row and each
column, and leaving 0 in the remaining ones. This matrix can be interpreted
as the opposite of the adjacency matrix, which is instead constructed from
the distance matrix of a graph by keeping for each row and each column only
the distances are equal to 1. Hence, the adjacency matrix can be viewed as a
DMIN-matrix and the eccentricity matrix can be viewed as a DMAX-matrix.

Since 2018, there have appeared quite a few results about the eccentricity
matrix of undirected graphs. Wang et al. [120] showed that the eccentricity
matrices of trees are irreducible. In 2019, Wang et al. [123] investigated
the relationship between the ε-energy (the sum of the absolute values of
the eigenvalues of the eccentricity matrix) and the A-energy (the sum of
the absolute values of the eigenvalues of the adjacency matrix). They also
provided upper and lower bounds for the ε-energy, and showed that the
extremal graphs are a kind of self-centered graphs. In 2020, Wei et al. [124]
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14 Chapter 1. Introduction

characterized the extremal trees of given diameter having the minimum ε-
spectral radius. In 2021, Patel et al. [104] studied the irreducibility and the
spectrum of the eccentricity matrix for particular classes of graphs, namely
windmill graphs, the coalescence of complete graphs, and the coalescence
of two cycles. In 2022, Wang et al. [121] showed that when the order
n tends to infinity, the fractions of non-isomorphic cospectral graphs with
respect to the adjacency and the eccentricity matrix behave like those only
concerning the self-centered graphs with diameter two. More results regarding
the eccentricity matrix of undirected graphs can be found in [51,67,92–94,
111, 114, 122, 125]. However, there is still little reported research on the
eccentricity matrix of digraphs.

In 2022, Yang and Wang [137] first extended the concept of eccentricity
matrix from graphs to digraphs. They considered the irreducibility of the
eccentricity matrix of a digraph with diameter 2, and obtained a lower bound
on the spectral radius of the eccentricity matrix of a digraph with diameter 2.

With the above as our motivation, we continued our research on the
eccentricity matrix of digraphs. In Chapter 5, we obtain lower bounds for the
eccentricity spectral radius among all join digraphs with a fixed dichromatic
number.

1.3 Spectral moment and spectral radius

Spectral graph theory is an important research subject within algebraic graph
theory, studying the structural properties of a graph by relating the structure to
the eigenvalues and eigenvectors of matrices associated with the graph. There
are many defined and studied concepts related to the eigenvalues of a matrix,
such as its spectral radius, spectral moment, spread, energy, etc. In this thesis,
we mainly focus on the spectral moment (Chapters 2 and 3) and the spectral
radius (Chapters 4 and 5) of matrices associated with digraphs. Next, we will
give a short overview of the most relevant concepts and results regarding the
spectral moment and the spectral radius of matrices of (di)graphs, respectively.
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1.3.1 Spectral moment

For a fixed nonnegative integer k, the k-th adjacency spectral moment of a
digraph G is defined as

SMk(G) =
n
∑

i=1

zk
i ,

where zi are the eigenvalues of A(G). It is known and straightforward to show
that the latter sum equals ck, the total number of directed closed walks of
length k in G. Similarly, for the Laplacian matrix and Aα-matrix, the k-th
spectral moments of G are

LSMk(G) =
n
∑

i=1

λk
i and SM k

α(G) =
n
∑

i=1

λk
αi ,

where λi and λαi are the eigenvalues of L(G) and Aα(G), respectively.

For an undirected graph H, let

SMk(H) =
n
∑

i=1

νk
i

be the k-th spectral moment of H, where νi are the eigenvalues of A(H). Let

SM(H) =
�

SM0(H), SM1(H), . . . , SMn−1(H)
�

be the sequence of spectral moments of H. Several groups of researchers have
focused on the study of this sequence of spectral moments of graphs. Some
recent and very recent results involving the sequence of spectral moments of
graphs can be found in [21, 29, 34, 35, 103]. In another direction, scholars
have related the spectral moments of an undirected graph H to the energy
E(H) =

∑n
i=1 |νi|. In fact, in [105], de la Peña et al. proved

E(H)≥
�

SMr(H)
�2 �SMs(H)SMt(H)

�−1/2 ,

when H is a bipartite graph with at least one edge and r, s, t are even positive
integers such that 4r = s + t + 2. And in [146], Zhou et al. defined the
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moment-like quantities SM∗k (G) =
∑n

i=1 |νi|k and proved

E(H)≥
�

SM∗r (H)
�2 �

SM∗s (H)SM∗t (H)
�−1/2

,

when H is a graph with at least one edge and r, s, t are nonnegative real
numbers such that 4r = s+ t + 2. Obviously, the result in [105] is a special
case of [146].

Most studies on spectral moments, however, have focused on the adjacency
matrix of graphs. For results on the spectral moments of other graph matrices
associated with undirected graphs the reader is referred to [88,97,126]. For
digraphs, results about the spectral moments of matrices are generally lacking.
This motivated us to study the spectral moments of the Laplacian matrix and
the Aα-matrix of digraphs.

1.3.2 Spectral radius

The spectral radius of a matrix is the maximum of the absolute values of the
eigenvalues of that matrix. Apart from the theoretical relevance, the spectral
radius has been studied in the context of applications. As we mentioned
before, as an example the adjacency spectral radius can reflect the ability of
networks to withstand virus transmission. Here we are mainly interested in the
theoretical implications. Within algebraic graph theory, the research regarding
the spectral radius of various different matrices has attracted considerable
attention. Researchers have in particular paid attention to the adjacency
spectral radius [22,54,63,84,140], the Laplacian spectral radius [1,87,142,
144, 145], the signless Laplacian spectral radius [19, 20, 58, 73, 147], the
distance spectral radius [9,95,102,141,143], and the Aα spectral radius [17,
57,76,90,135].

However, all of the above references deal with undirected graphs. Al-
though a great deal of research has been done on spectral radii in conjunction
with various structural parameters and invariants of graphs, compared to
the above lists, results on digraphs are relatively scarce. Early results on the
spectral radius of digraphs can be found in the survey [14]. Recently, some
new results about the spectral radius of digraphs have appeared. In 2012, Lin
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1.4. Some known results 17

et al. [80] established sharp upper and lower bounds for digraphs with some
given graph parameters, such as the clique number, girth, and vertex connec-
tivity, and characterized the corresponding extremal graphs. In 2016, Drury
and Lin [32] determined the digraphs that have the minimum and second min-
imum spectral radius among all strongly connected digraphs with given order
and dichromatic number. In 2021, Xi et al. [129] completely determined the
strongly connected digraphs minimizing the spectral radius among all strongly
connected digraphs with order n and diameter d, for d = 1, 2, 3, 4, 5, 6, 7, n−1.
In 2022, Shan et al. [115] characterized the extremal digraphs with the maxi-
mal or minimal α-spectral radius among some digraph classes, such as rose
digraphs, generalized theta digraphs, and tri-ring digraphs with given size
m. In 2023, Ganie and Carmona [41] established an increasing sequence of
lower bounds for the spectral radius of digraphs. For more results on digraphs
see [4,10,39,40,42,55,59,64,65,71,82,89,128,130–132]. In this thesis, we
mainly study the spectral radii of the Aα-matrix and the eccentricity matrix of
digraphs.

1.4 Some known results

In this section, we will list some known results for later reference. First, since
we will focus on digraphs with a fixed dichromatic number, we recall some
useful lemmas involving r-critical digraphs that appeared in a paper due to
Mohar [96]. Let G be a digraph and recall that χ(G) denotes the dichromatic
number of G, i.e., the smallest integer r such that G has a partition of V (G)
into r sets, each inducing an acyclic subdigraph. Suppose that v ∈ V (G) is a
vertex such that χ(G− v)< χ(G). Then we say that v is a critical vertex. If
every vertex of G is critical and χ(G) = r, then we say that G is an r-critical
digraph. Note that every digraph with dichromatic number at least r contains
an induced subdigraph that is r-critical. The following results relate the
degrees of critical vertices to the dichromatic number, and determine some
structure of the extremal cases. These results turn out to be very useful for
our purposes.
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Lemma 1.1 (Mohar [96]). If v is a critical vertex in a digraph G with dichro-
matic number r, then d+G (v)≥ r − 1 and d−G (v)≥ r − 1.

Lemma 1.2 (Mohar [96]). Let G be an r-critical digraph of order n in which
every vertex v satisfies d+G (v) = d−G (v) = r − 1. Then one of the following cases
occurs:

(i) r = 2 and G is a directed cycle of length n≥ 2.

(ii) r = 3 and G is a bidirected cycle of odd length n≥ 3.

(iii) G is a bidirected complete graph of order r ≥ 4.

Because a lot of properties of spectral radii involve irreducibility of ma-
trices, we recall the concept of an irreducible matrix. Note that we assume
throughout the sequel that all matrices are square matrices. A matrix M is
said to be reducible if there exists a permutation matrix P such that

M = P

�

M11 0
M21 M22

�

PT ,

where M11 and M22 are square blocks. If no such permutation matrix P exists,
then M is said to be irreducible.

We next introduce some notation we adopted from [6] to define what we
mean by A≤ B, A< B, and A� B for two n× n matrices A and B.

Definition 1.1 (Berman and Plemmons [6]). Let A= (ai j), B = (bi j) be two
n× n matrices. If ai j ≤ bi j for all i and j, then A ≤ B. If A ≤ B and A 6= B,
then A< B. If ai j < bi j for all i and j, then A� B.

We list a number of known results on matrices and their spectral radii.

Lemma 1.3 (Berman and Plemmons [6]). Let A = (ai j), B = (bi j) be two
n×n matrices with spectral radii ρ(A) and ρ(B), respectively. If 0≤ A≤ B, then
ρ(A)≤ ρ(B). Furthermore, If 0≤ A< B and B is irreducible, then ρ(A)< ρ(B).

Here we use 0 to denote the all-zero n× n matrix.
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Lemma 1.4 (Horn and Johnson [56]). Let M = (mi j)n×n be a nonnegative
matrix with spectral radius ρ(M). Then

min
1≤i≤n

n
∑

j=1

mi j ≤ ρ(M)≤ max
1≤i≤n

n
∑

j=1

mi j .

If M is irreducible, one of the equality holds if and only if the row sums of M are
all equal. And

min
1≤ j≤n

n
∑

i=1

mi j ≤ ρ(M)≤ max
1≤ j≤n

n
∑

i=1

mi j .

If M is irreducible, one of the equality holds if and only if the column sums of M
are all equal.

Lemma 1.5 (Horn and Johnson [56]). Let M be an irreducible and nonnegative
matrix of order n. Then

(a) ρ(M)> 0.

(b) ρ(M) is an algebraically simple eigenvalue of M.

(c) there is a unique real vector x = (x1, x2, . . . , xn)T such that Mx = ρ(M)x
and x1+ x2+ · · ·+ xn = 1; this vector is positive.

(d) there is a unique real vector y = (y1, y2, . . . , yn)T such that yT M = ρ(M)yT

and x1 y1+ · · ·+ xn yn = 1; this vector is positive.

Lemma 1.6 (Horn and Johnson [56]). If M is a nonnegative matrix and x≥ 0
is a nonnegative vector such that Mx ≥ βx for some β ∈ R, then ρ(M) ≥ β .
Furthermore, if M is irreducible and Mx> βx, then ρ(M)> β .

We also need the following definition and result regarding an equitable
quotient matrix.

Definition 1.2 (Brouwer and Haemers [13]). Let M be a complex matrix of
order n described in the following block form

M =











M11 · · · M1t
...

. . .
...

Mt1 · · · Mt t











,
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where the blocks Mi j are ni × n j matrices for any 1 ≤ i, j ≤ t and n =
n1 + n2 + · · ·+ nt . For 1 ≤ i, j ≤ t, let bi j be the average row sum of Mi j,
i.e. bi j is the sum of all entries in Mi j divided by the number of rows. Then
B(M) = (bi j) (or simply B) is called the quotient matrix of M . If for each pair
i, j, the row sum of the matrix Mi j is the same for each row, then B is called
an equitable quotient matrix of M .

Lemma 1.7 (You, Yang, So and Xi [138]). Let M be a nonnegative matrix, and
let B be the equitable quotient matrix of M as defined in Definition 1.2. If B is
irreducible, then ρ(B) = ρ(M).

The following lemma is adopted from [8] and describes what is known as
a topological ordering of an acyclic digraph.

Lemma 1.8 (Bondy and Murty [8]). Let G be a digraph with no directed cycle.
Then δ−(G) = 0 and there is an ordering v1, v2, . . . , vn of V (G) such that, for
1≤ i ≤ n, every arc of G with head vi has its tail in {v1, v2, . . . , vi−1}.

We also recall Karamata’s inequality for later use. Let I be an interval
on the real line and let f denote a real-valued, convex function defined on
I . If x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn are numbers in I such that
(x1, x2, . . . , xn) majorizes (y1, y2, . . . , yn), then

f (x1) + f (x2) + · · ·+ f (xn)≥ f (y1) + f (y2) + · · ·+ f (yn).

Moreover, if f is a strictly convex function, then the inequality holds with
equality if and only if x i = yi for all i = 1, 2, . . . , n. Here majorization means
that (x1, x2, . . . , xn) and (y1, y2, . . . , yn) satisfy

x1+ x2+ · · ·+ x i ≥ y1+ y2+ · · ·+ yi ,

for all i = 1, 2, . . . , n− 1, and

x1+ x2+ · · ·+ xn = y1+ y2+ · · ·+ yn.

We complete this introductory chapter by giving a brief outline of our
main contributions to the field.
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1.5 Outline of the main results of this thesis

This thesis consists of five main chapters. Apart from this introductory chapter,
the other four chapters are based on previously submitted papers. These
four chapters mainly consider the spectral moments or the spectral radius of
digraphs with a fixed dichromatic number, involving the Laplacian matrix,
the Aα matrix, and the eccentricity matrix. The remainder of this thesis is
organized as follows.

In Chapter 2, we obtain the digraphs which attain the minimal and maxi-
mal Laplacian energy (also known as the second Laplacian spectral moment)
among all (join) digraphs in Gn,r . The minimal Laplacian energy is attained
by bidirected complete graphs and in-trees. The maximal Laplacian energy
is attained by the join digraphs G =

∨r
i=1 V i , in which each V i is a transitive

tournament and |V (V i)−V (V j)| ≤ 1. These extremal digraphs are the same
as the ones with the maximal adjacency spectral radius in [78] (and also with
the maximal Aα spectral radius in [89]). In addition, we determine sharp
upper and lower bounds for the third Laplacian spectral moment among all
join digraphs in Gn,r .

In Chapter 3, we obtain the digraphs which attain the minimal and max-
imal Aα energy (also known as the second Aα spectral moment) among all
(join) digraphs in Gn,r . We also determine sharp bounds for the third Aα
spectral moment among all join digraphs in Gn,r . These results generalize the
results about the second and third Laplacian spectral moments of digraphs in
Chapter 2.

In Chapter 4, by using the equitable quotient matrix, we obtain the digraph
which has the maximal Aα spectral radius among all digraphs in Gn,r . This
provides a new proof for the results of Liu et al. [89]. Also, among all digraphs
in Gn,r , this extremal digraph for the Aα spectral radius is the same as the
extremal digraph for the adjacency spectral radius, the Laplacian energy, and
the Aα energy. Moreover, we obtain the digraph which has the minimal Aα
spectral radius among the join of in-trees in Gn,r .

In Chapter 5, we consider bounds for the spectral radius of join digraphs
in Gn,r involving the eccentricity matrix. We obtain lower bounds for the
eccentricity spectral radius among all join digraphs in Gn,r , and derive upper
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22 Chapter 1. Introduction

bounds for the eccentricity spectral radius of some special join digraphs in
Gn,r . These extremal digraphs for the eccentricity spectral radius are very
different from those in the other chapters.
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Chapter 2

Bounds for the Laplacian
spectral moments of digraphs

In this chapter, we characterize the digraphs which attain the minimal and
maximal Laplacian energy within classes of digraphs with a fixed dichromatic
number. We determine sharp bounds for the third Laplacian spectral moment
within the special subclass which we define as join digraphs. In addition, we
leave some open problems.

2.1 Introduction

Recall that the Laplacian matrix L(G) of G is defined by L(G) = D+(G)−A(G),
where A(G) is an adjacency matrix and D+(G) = diag(d+1 , d+2 , . . . , d+n ) is a
diagonal outdegree matrix of G. Hence, L(G) = (`i j) is an n×n matrix, where

`i j =











d+i , if i = j,

−1, if (vi , v j) ∈A (G),

0, otherwise.

As we mentioned in Subsection 1.3.1, the results about the spectral mo-
ments of the adjacency matrix or the Laplacian matrix of digraphs are generally

23
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24 Chapter 2. Bounds for the Laplacian spectral moments of digraphs

lacking. In this chapter, we are mainly concerned with the second and third
Laplacian spectral moments of digraphs. Obviously,

LSM0(G) =
n
∑

i=1

λ0
i = n

and

LSM1(G) =
n
∑

i=1

λ1
i =

n
∑

i=1

d+i = e(G).

For k = 2, the second Laplacian spectral moment was first studied by Perera
and Mizoguchi in [107], where they defined the Laplacian energy of a digraph
G as

LE(G) =
n
∑

i=1

λ2
i .

This is a direct analogue of the definition LE(H) =
∑n

i=1λ
2
i that Lazić intro-

duced in [66] for the Laplacian energy of an undirected graph H with vertex
set {v1, v2, . . . , vn}. In [66], he also proved that LE(H) =

∑n
i=1 di(di + 1),

where di is the degree of vi in H.

As we mentioned in Subsection 1.2.1, there exist many alternative def-
initions for graph energies of graphs and digraphs, as witnessed by the
sources [46,47,68]. This shows the popularity of this topic within chemical
graph theory. Nevertheless, there are just a few published papers on the
Laplacian energy of digraphs. They mainly deal with obtaining the lower
and upper bounds for LE(G) and characterizing the extremal digraphs, as it
was done in [110] for general digraphs, and for the special graph classes of
directed trees, unicyclic digraphs and bicyclic digraphs in [136]. We extend
these results to digraphs with a fixed dichromatic number.

Throughout this chapter, we consider only connected digraphs without
loops or multiple arcs. Recall that Gn,r is denoted the set of digraphs of
order n with dichromatic number r. And for the join digraph

∨r
i=1 V i, we

mainly consider each V i is a connected acyclic digraph with ni vertices with
∑r

i=1 ni = n and n1 ≥ n2 ≥ · · · ≥ nr .

The rest of the chapter is organized as follows. In Section 2.2, we obtain
the digraphs which attain the minimal and maximal Laplacian energy LE(G)
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2.2. Extremal digraphs for the Laplacian energy 25

among all (join) digraphs in Gn,r . In Section 2.3, we determine sharp upper
and lower bounds for the third Laplacian spectral moment LSM3(G) among
all join digraphs in Gn,r . We finish the chapter with some concluding remarks
and open problems in Section 2.4.

2.2 Extremal digraphs for the Laplacian energy

In this section, we will characterize the digraphs which attain the minimal and
maximal Laplacian energy LE(G) among all join digraphs (Subsection 2.2.1)
and all digraphs (Subsection 2.2.2) in Gn,r . First, we list some known results
and lemmas that we use in our proofs. Recall that for any digraph G of order
n we assume that V (G) = {v1, v2, . . . , vn}, that d+i denotes the outdegree of
vi , and that we use c2 to indicate the total number of directed closed walks of
length 2 in G.

Lemma 2.1 (Qi et al. [110]). Let G be a digraph of order n. Then

LE(G) =
n
∑

i=1

(d+i )
2+ c2.

Lemma 2.2 (Perera and Mizoguchi [107], Qi et al. [110]). Let G be a digraph
of order n. Then

n− 1≤ LE(G)≤ n2(n− 1).

Moreover, the first inequality is an equality if and only if G is an in-tree, and the
second inequality is an equality if and only if G is a bidirected complete graph.

We use the above two lemmas to prove the following counterpart of
Lemma 2.2 for acyclic digraphs. We also need to use the Karamata’s inequality
introduced in Section 1.4.

Lemma 2.3. Let G be an acyclic digraph of order n. Then

n− 1≤ LE(G)≤
n(n− 1)(2n− 1)

6
.

Moreover, the first inequality is an equality if and only if G is an in-tree, and the
second inequality is an equality if and only if G is a transitive tournament.
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Proof. The statements about the lower bound follow directly from Lemma 2.2.
Lemma 2.1 implies that LE(G) =

∑n
i=1(d

+
i )

2 for an acyclic digraph G. So
we need to find the maximum possible value of

∑n
i=1(d

+
i )

2 among all acyclic
digraphs.

By Lemma 1.8, any acyclic digraph admits a topological ordering, i.e.,
an ordering of its vertices {v1, v2, . . . , vn} such that for every arc (vi , v j), we
have i < j. Using Karamata’s inequality, for the acyclic digraph with order
n and size e,

∑n
i=1(d

+
i )

2 is maximized when the outdegree sequence is (n−
1, n − 2, . . . , n − x , y, 0, . . . , 0), where 1 ≤ x ≤ n, 0 ≤ y ≤ n − x − 2 and
(n−1+n−x)x

2
+ y = e. Clearly,

n
∑

i=1

(n− i)2 ≥
x
∑

i=1

(n− i)2+ y2.

That is,
∑n

i=1(d
+
i )

2 is maximized when arcs (vi , v j) exist for all i < j and j ≤ n,
so when d+i = n− i for i = 1, . . . , n. Hence, using a well-known expression
for the sum of squares, we obtain

LE(G) =
n
∑

i=1

(d+i )
2 ≤

n
∑

i=1

(n− i)2 =
n(n− 1)(2n− 1)

6
.

The above inequality is an equality if and only if d+i = n− i for i = 1, . . . , n.
It is an easy exercise and a folklore result that this is only possible if G is a
transitive tournament.

2.2.1 Extremal digraphs for the Laplacian energy among all join
digraphs

In our first main results, we will determine the digraphs which attain the
minimal and maximal Laplacian energy LE(G) among all join digraphs in
Gn,r . We need the following inequality in our proofs of the main results in
this subsection.

Lemma 2.4. Let f (x) = x2(a − bx) for an integer variable x and two fixed
real numbers a and b. Suppose x i and x j are chosen such that x i − x j ≥ 2 and
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2.2. Extremal digraphs for the Laplacian energy 27

x j <
a

3b
− 1. Then

f (x i − 1) + f (x j + 1)< f (x i) + f (x j).

Proof. Since

f (x i − 1) + f (x j + 1)

= (x i − 1)2[a− b(x i − 1)] + (x j + 1)2[a− b(x j + 1)]

= x2
i (a− bx i) + bx2

i + (1− 2x i)(a− bx i + b)

+ x2
j (a− bx j)− bx2

j + (1+ 2x j)(a− bx j − b),

we have

[ f (x i − 1) + f (x j + 1)]− [ f (x i) + f (x j)]

= bx2
i + (1− 2x i)(a− bx i + b)− bx2

j + (1+ 2x j)(a− bx j − b)

= (x j − x i)(−3bx i − 3bx j + 2a− 3b)− 6bx i + 2a

≤−2(−3bx i − 3bx j + 2a− 3b)− 6bx i + 2a

= 6bx j − 2a+ 6b < 6b
� a

3b
− 1
�

− 2a+ 6b = 0.

The next result characterizes the digraphs which attain the minimal Lapla-
cian energy LE(G) among all join digraphs

∨r
i=1 V i in Gn,r .

Theorem 2.5. Let G =
∨r

i=1 V i . Then

LE(G)≥ (r − 1)n2+ r2n− r3,

with equality holding if and only if each V i is an in-tree, n1 = n− r + 1, and
n2 = · · ·= nr = 1.

Proof. Let {v i
1, v i

2, . . . , v i
ni
} be the vertex set of V i, where i = 1,2, . . . , r. Let

d+G (v
i
j) be the outdegree of v i

j in G and d+
V i (v

i
j) be the outdegree of v i

j in V i,
where j = 1,2, . . . , ni. Obviously, we have d+G (v

i
j) = n− ni + d+

V i (v
i
j), where

j = 1, 2, . . . , ni and i = 1, 2, . . . , r. Since V i is acyclic and connected, we know
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that
∑ni

j=1 d+
V i (v

i
j) = e(V i)≥ ni−1, with equality if and only if V i is a directed

tree. Using Lemma 2.3, we also have
∑ni

j=1

�

d+
V i (v

i
j)
�2
≥ ni −1, with equality

if and only if V i is an in-tree.

Hence, starting with the expression from Lemma 2.1, we have

LE(G) =
n
∑

i=1

(d+i )
2+ c2

=
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�2
+ 2
∑

i< j

nin j

=
r
∑

i=1

ni
∑

j=1

�

n− ni + d+
V i (v

i
j)
�2
+







 

r
∑

i=1

ni

!2

−
r
∑

i=1

n2
i







=
r
∑

i=1







ni
∑

j=1

(n− ni)
2+ 2(n− ni)

ni
∑

j=1

d+
V i (v

i
j) +

ni
∑

j=1

�

d+
V i (v

i
j)
�2







+

 

n2−
r
∑

i=1

n2
i

!

≥

 

n3+
r
∑

i=1

n3
i − 2n

r
∑

i=1

n2
i

!

+
r
∑

i=1

�

2(n− ni)(ni − 1) + (ni − 1)
�

+

 

n2−
r
∑

i=1

n2
i

!

=
�

n3+ 3n2− (2r − 3)n− r
�

+
r
∑

i=1

n2
i (ni − 2n− 3).

Next, we are going to use Lemma 2.4 to determine the minimum value of
the above sum

∑r
i=1 n2

i (ni − 2n− 3). Since ni − 2n− 3< 0, this is equivalent
to determining the maximum value of

∑r
i=1 n2

i (2n+ 3− ni).

Let f (x) = x2(2n + 3 − x) and F(x1, x2, . . . , xr) =
∑r

i=1 f (x i), where
∑r

i=1 x i = n and 1 ≤ x i ≤ n − r + 1. Suppose that x i − x j ≥ 2 for some
x i and x j. Then, since x i + x j ≤ n− (r − 2), we have x j ≤

n−r
2

. Now, let
a = 2n+ 3 and b = 1. Since x j ≤

n−r
2
< a

3b
− 1, using Lemma 2.4, we get

f (x i−1)+ f (x j+1)< f (x i)+ f (x j). Then we have F(x1, . . . , x i−1, . . . , x j+
1, . . . , xr)< F(x1, . . . , x i , . . . , x j , . . . , xr). This implies that

∑r
i=1 x2

i (2n+3−x i)
is maximal when x1 = n− r + 1 and x2 = · · ·= xr = 1. If there are no x i , x j
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such that x i − x j ≥ 2, then |x i − x j| ≤ 1 for each 1≤ i, j ≤ r. For any x i ≥ x j ,
let x ′i = x i + 1 and x ′j = x j − 1. Then x ′i − x ′j = x i + 1− x j + 1≥ 2 and

f (x i) + f (x j) = f (x ′i − 1) + f (x ′j + 1)< f (x ′i) + f (x ′j).

Concluding, we obtain

LE(G)≥
�

n3+ 3n2− (2r − 3)n− r
�

+
r
∑

i=1

n2
i (ni − 2n− 3)

≥
�

n3+ 3n2− (2r − 3)n− r
�

+ (n− r + 1)2(n− r + 1− 2n− 3) + (r − 1)(1− 2n− 3)

= (r − 1)n2+ r2n− r3,

with equality holding here and above if and only if each V i is an in-tree,
n1 = n− r + 1, and n2 = · · ·= nr = 1.

The next result characterizes the digraphs which attain the maximal
Laplacian energy LE(G) among all join digraphs

∨r
i=1 V i in Gn,r . We will

distinguish the cases that r is a divisor of n, denoted by r | n, and that r does
not divide n, denoted by r - n.

Theorem 2.6. Let G =
∨r

i=1 V i . Then the following inequalities hold:

(i) If r | n, we have

LE(G)≤
�

1+
1

3r2 −
1

r

�

n3−
1

2r
n2+

1

6
n,

with equality holding if and only if each V i is a transitive tournament with
ni =

n
r
.

(ii) If r - n, we have

LE(G)≤ n3+
1

6
n+ p− q,

where p =
 

n
r

£2 �
n− r

�

n
r

���

1
3

 

n
r

£

− n− 1
2

�

and q =
�

n
r

�2 �
n− r

 

n
r

£�

�

1
3

�

n
r

�

− n− 1
2

�

. The inequality is an equality if and only if each V i is a
transitive tournament, with ns =

 

n
r

£

for s = 1, 2, . . . , n− r
�

n
r

�

and nt =
�

n
r

�

for t = n− r
�

n
r

�

+ 1, n− r
�

n
r

�

+ 2, . . . , r.
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Proof. Similarly as in the proof of Theorem 2.5, using Lemma 2.3, we have
∑ni

j=1 d+
V i (v

i
j) = e(V i) ≤ ni(ni−1)

2
and

∑ni
j=1

�

d+
V i (v

i
j)
�2
≤ ni(ni−1)(2ni−1)

6
, with

equality in the latter inequality if and only if V i is a transitive tournament.

Hence, using Lemma 2.1, we have

LE(G) =
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�2
+ 2
∑

i< j

nin j

=
r
∑

i=1







ni
∑

j=1

(n− ni)
2+ 2(n− ni)

ni
∑

j=1

d+
V i (v

i
j) +

ni
∑

j=1

�

d+
V i (v

i
j)
�2







+

 

n2−
r
∑

i=1

n2
i

!

≤

 

n3+
r
∑

i=1

n3
i − 2n

r
∑

i=1

n2
i

!

+
r
∑

i=1

�

2(n− ni)
ni(ni − 1)

2
+

ni(ni − 1)(2ni − 1)
6

�

+

 

n2−
r
∑

i=1

n2
i

!

=
�

n3+
1

6
n
�

+
r
∑

i=1

n2
i

�

1

3
ni − n−

1

2

�

.

Next, we are going to use Lemma 2.4 to determine the maximum value of the
above sum

∑r
i=1 n2

i

�

1
3
ni − n− 1

2

�

. Since 1
3
ni − n− 1

2
< 0, this is equivalent

to determining the minimum value of
∑r

i=1 n2
i

�

n+ 1
2
− 1

3
ni

�

.

Let f (x) = x2
�

n+ 1
2
− 1

3
x
�

and F(x1, x2, . . . , xr) =
∑r

i=1 f (x i), where
∑r

i=1 x i = n and 1 ≤ x i ≤ n − r + 1. Let a = n + 1
2

and b = 1
3
. Since

x j <
a

3b
−1, using Lemma 2.4, we get f (x i−1)+ f (x j+1)< f (x i)+ f (x j) for

any x i , x j with x i−x j ≥ 2. Then we have F(x1, . . . , x i−1, . . . , x j+1, . . . , xr)<
F(x1, . . . , x i , . . . , x j , . . . , xr). That is, when |x i−x j| ≤ 1,

∑r
i=1 x2

i

�

n+ 1
2
− 1

3
x i

�

is minimal.

(i) If r | n, then |ni − n j| ≤ 1 implies ni =
n
r

for all i = 1,2, . . . , r. Therefore,
we obtain

LE(G)≤
�

n3+
1

6
n
�

+
r
∑

i=1

n2
i

�

1

3
ni − n−

1

2

�

≤
�

n3+
1

6
n
�

+ r
�n

r

�2� n

3r
− n−

1

2

�
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=
�

1+
1

3r2 −
1

r

�

n3−
1

2r
n2+

1

6
n,

with equality if and only if each V i is a transitive tournament of order ni =
n
r
.

(ii) If r - n, then |ni − n j| ≤ 1 implies ns =
 

n
r

£

for s = 1, 2, . . . , n− r
�

n
r

�

and
nt =

�

n
r

�

for t = n− r
�

n
r

�

+ 1, n− r
�

n
r

�

+ 2, . . . , r. Therefore, we obtain

LE(G)≤
�

n3+
1

6
n
�

+
r
∑

i=1

n2
i

�

1

3
ni − n−

1

2

�

≤
�

n3+
1

6
n
�

+
�

n− r
�n

r

��¡n

r

¤2�1

3

¡n

r

¤

− n−
1

2

�

+
�

r − n+ r
�n

r

���n

r

�2�1

3

�n

r

�

− n−
1

2

�

=
�

n3+
1

6
n
�

+
�

n− r
�n

r

��¡n

r

¤2�1

3

¡n

r

¤

− n−
1

2

�

−
�

n− r
¡n

r

¤��n

r

�2�1

3

�n

r

�

− n−
1

2

�

= n3+
1

6
n+ p− q,

where p =
 

n
r

£2 �
n− r

�

n
r

���

1
3

 

n
r

£

− n− 1
2

�

and q =
�

n
r

�2 �
n− r

 

n
r

£�

�

1
3

�

n
r

�

− n− 1
2

�

. Obviously, the inequality is an equality if and only if each
V i is a transitive tournament, with ns =

 

n
r

£

for s = 1,2, . . . , n− r
�

n
r

�

and
nt =

�

n
r

�

for t = n− r
�

n
r

�

+ 1, n− r
�

n
r

�

+ 2, . . . , r.

This completes the proof of Theorem 2.6.

Let G[n1, n2, . . . , nr] denote the join
∨r

i=1 V i in which each V i is either
an in-tree or a transitive tournament, respectively. Then by Lemma 2.4 and
from the proof of Theorem 2.5 (or Theorem 2.6, respectively), we can find
a size relationship with respect to the Laplacian energies of the digraphs
G[n1, n2, . . . , nr] ∈ Gn,r for different choices of the ni . We give the following
example with n = 10 and r = 4 to illustrate this, as shown in Figure 2.1.
Every arrow points to a digraph with a higher Laplacian energy.
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[7,1,1,1]G

[6,2,1,1]G

[5,3,1,1]G [5,2,2,1]G

[4,4,1,1]G [4,3,2,1]G [4, 2,2,2]G

[3,3,3,1]G [3,3, 2,2]G

Figure 2.1: The size relationship of the Laplacian energies of
G[n1, n2, n3, n4] ∈ G10,4.

2.2.2 Extremal digraphs for the Laplacian energy among all di-
graphs

In our second main results, we will determine the digraphs which attain the
minimal and maximal Laplacian energy LE(G) among all digraphs in Gn,r .

Recall that G is an r-critical digraph if every vertex v ∈ V (G) satisfies
χ(G− v)< χ(G) = r. In order to characterize the digraphs which attain the
minimal Laplacian energy LE(G) among all digraphs in Gn,r , we need Lem-
mas 1.1 and 1.2 involving r-critical digraphs in Mohar [96]. Note that every
digraph with dichromatic number at least r contains an induced subdigraph
that is r-critical. In addition, we also need the following lemma.

Lemma 2.7. Let G be a digraph in Gn,r , and let G′ be an r-critical subdigraph
of G. If G attains the minimal Laplacian energy LE(G) among all digraphs in
Gn,r , then d+G (v) = 1 for any v ∈ V (G) \ V (G′) and d+G (u) = d+G′(u) for any
u ∈ V (G′).

Proof. Suppose that G attains the minimal Laplacian energy LE(G) among
all digraphs in Gn,r . First, we prove d+G (v) = 1 for any v ∈ V (G) \ V (G′). We
start with the following claim.

Claim 2.1. d+G (v) 6= 0 for any v ∈ V (G) \ V (G′).
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2.2. Extremal digraphs for the Laplacian energy 33

Suppose there exists a vertex v ∈ V (G)\V (G′) such that d+G (v) = 0. Then
d−G (v)≥ 1, since G is connected. Let (w, v) ∈A (G) for w ∈ V (G). Let G1 be
obtained from G by reversing the direction on the arc (w, v), denoted as

G1 = G− (w, v) + (v, w).

Then

LE(G1) = LE(G)−
�

d+G (w)
�2
+
�

d+G (w)− 1
�2
+ 1= LE(G)− 2(d+G (w)− 1).

We discuss the possible choices for w, and derive contradictions in all of the
three cases.

Case 1. w ∈ V (G′). Since G′ is r-critical, d+G′(w)≥ 1. So we have d+G (w)> 1.
Then LE(G1)< LE(G), a contradiction to LE(G) being minimal.

Case 2. w ∈ V (G) \ V (G′) and d+G (w) > 1. Obviously LE(G1) < LE(G), a
contradiction.

Case 3. w ∈ V (G) \ V (G′) and d+G (w) = 1. Then LE(G1) = LE(G) and we
know d+

G1(w) = 0. So, for G1 there also exists a vertex v ∈ V (G1) \ V (G′)
such that d+

G1(v) = 0. We use the following procedure:

H0 := G;

i := 0;

while ∃ v ∈ V (H i) \ V (G′) s.t. d+
H i (v) = 0 do begin

select a vertex w ∈ V (H i) with (w, v) ∈A (H i);

H i+1 := H i − (w, v) + (v, w);

i := i+ 1;

end.

The resulting digraph H we obtain at the termination of this procedure
has no vertex v ∈ V (H) \ V (G′) such that d+H (v) = 0. By the procedure, for
the vertex w ∈ V (H i) with (w, v) ∈A (H i), we consider three cases:

(a) w ∈ V (G′);
(b) w ∈ V (H i) \ V (G′) with d+

H i (w)> 1;

(c) w ∈ V (H i) \ V (G′) with d+
H i (w) = 1.
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34 Chapter 2. Bounds for the Laplacian spectral moments of digraphs

There is at least one H i such that w ∈ V (G′), or w ∈ V (H i) \ V (G′) with
d+

H i (w) > 1. Otherwise, for every H i, w ∈ V (H i) \ V (G′) with d+
H i (w) = 1.

But this is impossible since H i+1 = H i − (w, v) + (v, w) and G is connected.
Now, as in Case 1 and Case 2 above, if there exists H i such that w ∈ V (G′),
or w ∈ V (H i) \ V (G′) with d+

H i (w) > 1, then LE(H i+1) < LE(H i) ≤ LE(G).
Hence, as above we conclude that LE(H) < LE(G), a contradiction. This
completes the proof of Claim 2.1.

We also need the following claim.

Claim 2.2. Every component of G −V (G′) is an in-tree, the root of which is
an inneighbor of exactly one vertex of G′.

Let T be a component of G − V (G′). Then Lemma 2.2 implies that T
is an in-tree. Let v0 ∈ V (T) be the root of T . From Claim 2.1, we have
d+G (v0) 6= 0. Since G is connected, by the minimality of LE(G), d+G (v0) = 1.
That is, the root of the in-tree T is the inneighbor of exactly one vertex of G′.
This completes the proof of Claim 2.2.

From Claims 2.1 and 2.2, we get that d+G (v) = 1 for any v ∈ V (G)\V (G′).
Next we will prove that d+G (u) = d+G′(u) for any u ∈ V (G′).

Suppose there exists a vertex u ∈ V (G′) such that d+G (u)> d+G′(u). Then
there exists an arc (u, v) ∈A (G) for v ∈ V (G) \ V (G′). Let

G2 = G− (u, v).

Claim 2.2 implies that G2 is connected. Clearly, LE(G2)< LE(G), a contradic-
tion. Hence, we conclude that d+G (u) = d+G′(u) for any u ∈ V (G′).

Now, we are ready to present and prove the main result of this section. It
characterizes the digraphs which attain the minimal Laplacian energy LE(G)
among all digraphs in Gn,r .

Theorem 2.8. Let G be a digraph in Gn,r . Then the following inequalities hold:

(i) If r = 2, we have

LE(G)≥







4, if n= 2,

n, if n≥ 3.
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2.2. Extremal digraphs for the Laplacian energy 35

If n = 2, the inequality is an equality if and only if G is a directed cycle C2. If
n≥ 3, the inequality is an equality if and only if G contains a directed cycle Cn′

(n′ ≥ 3) and every component (if any) of G −V (Cn′) is an in-tree, the root of
which is an inneighbor of exactly one vertex of Cn′ .

(ii) If r ≥ 3, we have
LE(G)≥ n+ r3− r2− r,

with equality holding if and only if G contains a bidirected complete graph
↔
K r

and every component (if any) of G −V (
↔
K r) is an in-tree, the root of which is

an inneighbor of exactly one vertex of
↔
K r .

Proof. Let G be a digraph in Gn,r . Then G must contain an induced subdigraph
G′ of order n′ that is r-critical. From Lemma 2.7, we obtain that if G attains the
minimal Laplacian energy LE(G) among all digraphs in Gn,r , then d+G (v) = 1
for any v ∈ V (G) \ V (G′) and d+G (u) = d+G′(u) for any u ∈ V (G′). That is, G
contains an r-critical digraph G′ and every component of G − V (G′) is an
in-tree, the root of which is an inneighbor of exactly one vertex of G′. So, we
have

LE(G)≥ LE(G′) + n− n′ =
∑

u∈V (G′)

�

d+G′(u)
�2
+ c2(G

′) + n− n′.

We next characterize the r-critical digraphs which attain the minimal Laplacian
energy.

By definition, every vertex of G′ is critical. Hence, using Lemma 1.1, we
know that each vertex u ∈ V (G′) satisfies d+G′(u)≥ r − 1 and d−G′(u)≥ r − 1.
Applying the characterizations of Lemma 1.2, the following cases need to be
considered.

Case 1. r = 2.

If r = 2 and n= 2, then G = G′ = C2. So, LE(G) = 4.

If r = 2 and n≥ 3, then

LE(G)≥
∑

u∈V (G′)

�

d+G′(u)
�2
+ c2(G

′) + n− n′

≥ n′(r − 1) + 0+ n− n′ = n,
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with equality holding if and only if G′ = Cn′ (n′ ≥ 3) and every component (if
any) of G −V (Cn′) is an in-tree, the root of which is an inneighbor of exactly
one vertex of Cn′ .

So, (i) follows.

Case 2. r ≥ 3. We distinguish three subcases.

Case 2.1. If n′ = r, then d+G′(u) = r − 1 for any u ∈ V (G′). That is, G′ =
↔
K r .

In that case,

LE(G)≥ LE(
↔
K r) + n− n′

= r(r − 1)2+ r(r − 1) + n− r

= n+ r3− r2− r,

with equality holding if and only if G contains a bidirected complete graph
↔
K r and every component of G−V (

↔
K r) is an in-tree, the root of which is an

inneighbor of exactly one vertex of
↔
K r .

Case 2.2. If n′ = r + 1, since d+G′(u)≥ r − 1 for any u ∈ V (G′), we have

e(G′)≥ (r + 1)(r − 1) and
c2(G′)

2
≥ e(G′)−

(r + 1)r
2

.

So,

LE(G)≥
∑

u∈V (G′)

�

d+G′(u)
�2
+ c2(G

′) + n− n′

≥ (r + 1)(r − 1)2+ 2(r + 1)(r − 1)− (r + 1)r + n− (r + 1)

= n+ r3− 3r − 2.

Case 2.3. If n′ ≥ r + 2 and r ≥ 4, then

LE(G)≥
∑

u∈V (G′)

�

d+G′(u)
�2
+ c2(G

′) + n− n′

≥ n′(r − 1)2+ 0+ n− n′

≥ n+ r3− 4r.
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If n′ ≥ r + 2 and r = 3, by Lemma 1.2, then

LE(G)≥
∑

u∈V (G′)

�

d+G′(u)
�2
+ c2(G

′) + n− n′

≥ 4n′+ 2n′+ n− n′

≥ n+ 25.

Since

(n+ r3− 3r − 2)− (n+ r3− r2− r) = r2− 2r − 2> 0 (r ≥ 3),

(n+ r3− 4r)− (n+ r3− r2− r) = r2− 3r > 0 (r ≥ 4)

and
n+ 25> n+ 15,

we obtain
LE(G)≥ n+ r3− r2− r,

with equality holding if and only if G contains a bidirected complete graph
↔
K r and every component of G−V (

↔
K r) is an in-tree, the root of which is an

inneighbor of exactly one vertex of
↔
K r . So, (ii) follows.

This completes the proof of Theorem 2.8.

As an illustration of the above theorem, Figure 2.2 shows all digraphs in
G6,3 attaining the minimal Laplacian energy.

The next result characterizes the digraphs which attain the maximal
Laplacian energy LE(G) among all digraphs in Gn,r . It is an easy consequence
of Theorem 2.6, which we state without proof.

Theorem 2.9. Let G be a digraph in Gn,r . Then the following inequalities hold:

(i) If r | n, we have

LE(G)≤
�

1+
1

3r2 −
1

r

�

n3−
1

2r
n2+

1

6
n,
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38 Chapter 2. Bounds for the Laplacian spectral moments of digraphs

Figure 2.2: The digraphs in G6,3 with the minimal Laplacian
energy.

with equality holding if and only if G =
∨r

i=1 V i and each V i is a transitive
tournament with ni =

n
r
.

(ii) If r - n, we have

LE(G)≤ n3+
1

6
n+ p− q,

where p =
 

n
r

£2 �
n− r

�

n
r

���

1
3

 

n
r

£

− n− 1
2

�

and q =
�

n
r

�2 �
n− r

 

n
r

£�

�

1
3

�

n
r

�

− n− 1
2

�

. The inequality is an equality if and only if G =
∨r

i=1 V i and
each V i is a transitive tournament, with ns =

 

n
r

£

for s = 1,2, . . . , n− r
�

n
r

�

and nt =
�

n
r

�

for t = n− r
�

n
r

�

+ 1, n− r
�

n
r

�

+ 2, . . . , r.

2.3 Bounds for the third Laplacian spectral moment

In this section, we will determine sharp bounds for the third Laplacian spec-
tral moment LSM3(G) of join digraphs in Gn,r . First, we present a general
formula for LSM3(G) of a digraph G. Recall that we assume G has vertex set
{v1, v2, . . . , vn}, with outdegrees d+1 , d+2 , . . . , d+n , and that

�

c(1)2 , c(2)2 , . . . , c(n)2

�

denotes the directed closed walk sequence of length 2. We let c3 denote the
total number of directed closed walks of length 3 in G.
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Lemma 2.10. Let G be a digraph of order n. Then

LSM3(G) =
n
∑

i=1

(d+i )
3+ 3

n
∑

i=1

d+i c(i)2 − c3.

Proof. Since the Laplacian matrix is an n× n matrix L(G) = (`i j), where

`i j =











d+i , if i = j,

−1, if (vi , v j) ∈A (G),

0, otherwise,

we have

LSM3(G) =
n
∑

i=1

λ3
i = t r

�

(L(G))3
�

=
n
∑

j1=1

n
∑

j2=1

n
∑

j3=1

` j1 j2` j2 j3` j3 j1 .

For the different (possible) choices of j1, j2, j3, we presented the respective
values in Table 2.1.

So, we get LSM3(G) =
∑n

i=1(d
+
i )

3+ 3
∑n

i=1 d+i c(i)2 − c3.

Table 2.1: The values of
∑n

j1=1

∑n
j2=1

∑n
j3=1 ` j1 j2` j2 j3` j3 j1 for

different choices of j1, j2, j3.

j1, j2, j3
∑n

j1=1

∑n
j2=1

∑n
j3=1 ` j1 j2` j2 j3` j3 j1

j1 = j2

j2 = j3
j3 = j1

∑n
i=1(d

+
i )

3

j3 6= j1 non-existent

j2 6= j3
j3 = j1 non-existent

j3 6= j1
∑n

i=1 d+i c(i)2

j1 6= j2

j2 = j3
j3 = j1 non-existent

j3 6= j1
∑n

i=1 d+i c(i)2

j2 6= j3
j3 = j1

∑n
i=1 d+i c(i)2

j3 6= j1 −c3
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We will use the above lemma to obtain an expression for LSM3(G) in case
G =

∨r
i=1 V i . We adopt the notation of the previous section.

Lemma 2.11. Let G =
∨r

i=1 V i . Then

LSM3(G) =
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

ni(n− ni)
2−

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni).

Proof. From Lemma 2.10, we obtain

LSM3(G) =
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

ni
∑

j=1

d+G (v
i
j)c2(v

i
j)− c3.

We also recall that d+G (v
i
j) = n− ni + d+

V i (v
i
j) and c2(v i

j) = n− ni, for j =
1,2, . . . , ni and i = 1, 2, . . . , r. So, we next consider c3.

Let c3(v i
j) be the number of directed closed walks of length 3 associated

with v i
j . Then c3 =

∑r
i=1

∑ni
j=1 c3(v i

j) is the total number of directed closed
walks of length 3 in G. Actually, any directed closed walk of length 3 associated
with v i

j is a triangle that starts and ends in v i
j . For any v i

j ∈ V (V
i), we denote

the associated triangles by v i
j → u→ w→ v i

j and discuss the possible choices
for u and w, and their contribution to the total number of triangles.

Case 1. u ∈ V (V i). The total contribution is clearly d+
V i (v

i
j)(n− ni).

Case 2. u /∈ V (V i). Let u ∈ V (V s) for s 6= i. Next, we consider w.

Case 2.1. w ∈ V (V s). Then the total contribution is
∑ns

t=1 d+V s(vs
t ).

Case 2.2. w /∈ V (V s). Then the total contribution is ns
�

(n−ns−ni)+d−
V i (v

i
j)
�

.

Hence, in Case 2, we get a total contribution of

∑

s 6=i





ns
∑

t=1

d+V s(vs
t ) + ns

h

(n− ns − ni) + d−
V i (v

i
j)
i



 .

Summing up, we get

c3 =
r
∑

i=1

ni
∑

j=1

c3(v
i
j)
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=
r
∑

i=1

ni
∑

j=1



d+
V i (v i

j)(n− ni) +
∑

s 6=i





ns
∑

t=1

d+V s(vs
t ) + ns

h

(n− ns − ni) + d−
V i (v i

j)
i







 .

Thus, LSM3(G)

=
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

ni
∑

j=1

d+G (v
i
j)c2(v

i
j)− c3

=
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

ni
∑

j=1

�

n− ni + d+
V i (v i

j)
�

(n− ni)

−
r
∑

i=1

ni
∑

j=1



d+
V i (v i

j)(n− ni) +
∑

s 6=i





ns
∑

t=1

d+V s(vs
t ) + ns

h

(n− ns − ni) + d−
V i (v i

j)
i









=
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

�

ni(n− ni)
2 + (n− ni)e(V

i)
�

−
r
∑

i=1

(n− ni)e(V
i)

−
r
∑

i=1



ni

∑

s 6=i

e(V s) + ni

∑

s 6=i

ns(n− ns − ni) + e(V i)
∑

s 6=i

ns





=
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

ni(n− ni)
2 −

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni)

+
r
∑

i=1

e(V i)



2(n− ni)−
∑

s 6=i

ns



−
r
∑

i=1

ni

∑

s 6=i

e(V s).

Since

r
∑

i=1

e(V i)



2(n− ni)−
∑

s 6=i

ns



−
r
∑

i=1

ni

∑

s 6=i

e(V s)

=
r
∑

i=1

e(V i)(n− ni)−
r
∑

i=1

ni

∑

s 6=i

e(V s)

= n
r
∑

i=1

e(V i)−
r
∑

i=1

ni



e(V i) +
∑

s 6=i

e(V s)





= n
r
∑

i=1

e(V i)−
r
∑

i=1

ni

 

r
∑

i=1

e(V i)

!

= 0,
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we obtain

LSM3(G) =
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

ni(n− ni)
2−

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni).

This completes the proof of the lemma.

Next, using the above expression we will determine sharp bounds for
LSM3(G) of join digraphs in Gn,r .

Theorem 2.12. Let G =
∨r

i=1 V i . Then

(i)
LSM3(G)≥

r
∑

i=1

�

−n4
i + (3n+ 6)n3

i − (3n2+ 12n+ 6)n2
i

�

+ n(n3+ 6n2+ 9n+ 4)− r(3n2+ 3n+ 1)

−
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is an in-tree.

(ii)
LSM3(G)≤

r
∑

i=1

�

−
1

4
n4

i +
�

n+
5

2

�

n3
i −
�

3n2

2
+

9n

2
+

1

4

�

n2
i

�

+ n2
�

n2+
3n

2
+

1

2

�

−
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is a transitive tournament.

Proof. We start with the expression from Lemma 2.11.

LSM3(G) =
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3

r
∑

i=1

ni(n− ni)
2−

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni).

Since d+G (v
i
j) = n− ni + d+

V i (v
i
j), for the first summation on the right-hand

side, we obtain the following equality.
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r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
=

r
∑

i=1

ni(n− ni)
3

+
r
∑

i=1

ni
∑

j=1

�

�

d+
V i (v

i
j)
�3
+ 3(n− ni)

�

d+
V i (v

i
j)
�2
+ 3(n− ni)

2d+
V i (v

i
j)
�

.

Using Lemma 2.3, its proof, and similar calculations, we obtain the follow-
ing lower and upper bounds which we will use to simplify some of the terms
on the right-hand side of the above expression.

ni − 1≤
ni
∑

j=1

d+
V i (v

i
j)≤

ni(ni − 1)
2

,

ni − 1≤
ni
∑

j=1

�

d+
V i (v

i
j)
�2
≤

ni(ni − 1)(2ni − 1)
6

,

ni − 1≤
ni
∑

j=1

�

d+
V i (v

i
j)
�3
≤

n2
i (ni − 1)2

4
.

In all of the above three inequalities, the lower bounds are only attained if
V i is an in-tree, and the upper bounds are only attained if V i is a transitive
tournament.

Combining the above terms, for the lower bound on LSM3(G) we obtain

LSM3(G) =
r
∑

i=1

ni(n− ni)
3

+
r
∑

i=1

ni
∑

j=1

�

�

d+
V i (v

i
j)
�3
+ 3(n− ni)

�

d+
V i (v

i
j)
�2
+ 3(n− ni)

2d+
V i (v

i
j)
�

+ 3
r
∑

i=1

ni(n− ni)
2−

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni)

≥
r
∑

i=1

�

ni(n− ni)
3+ (ni − 1) + 3(n− ni)(ni − 1) + 3(n− ni)

2(ni − 1)
�
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+ 3
r
∑

i=1

ni(n− ni)
2−

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni)

=
r
∑

i=1

�

−n4
i + (3n+ 6)n3

i − (3n2+ 12n+ 6)n2
i + (n

3+ 6n2+ 9n+ 4)ni

�

− r(3n2+ 3n+ 1)−
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is an in-tree with ni vertices.

For the upper bound we obtain

LSM3(G) =
r
∑

i=1

ni(n− ni)
3

+
r
∑

i=1

ni
∑

j=1

�

�

d+
V i (v

i
j)
�3
+ 3(n− ni)

�

d+
V i (v

i
j)
�2
+ 3(n− ni)

2d+
V i (v

i
j)
�

+ 3
r
∑

i=1

ni(n− ni)
2−

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni)

≤
r
∑

i=1

�

ni(n− ni)
3+

n2
i (ni − 1)2

4
+ 3(n− ni)

ni(ni − 1)(2ni − 1)
6

+ 3(n− ni)
2 ni(ni − 1)

2

�

+ 3
r
∑

i=1

ni(n− ni)
2−

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni)

=
r
∑

i=1

�

−
1

4
n4

i +
�

n+
5

2

�

n3
i −
�

3n2

2
+

9n

2
+

1

4

�

n2
i +

�

n3+
3n2

2
+

n

2

�

ni

�

−
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is a transitive tournament with ni

vertices.

Unfortunately, we are not able to characterize the extremal digraphs for
LSM3(G) precisely, as counterparts of Theorem 2.5 and Theorem 2.6, except
for the case when r = 2. Based on the expressions in Theorem 2.12, we
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next determine the digraphs which attain the minimal and maximal value of
LSM3(G) among the join digraphs in Gn,2.

Corollary 2.13. Let G = V 1 ∨ V 2. Then

(i) LSM3(G)≥ n3+ 8n− 16,
with equality holding if and only if V 1 and V 2 are in-trees with n1 = n− 1 and
n2 = 1.

(ii) LSM3(G)≤







1
32
(15n4− 4n3+ 12n2), if n is even,

1
32
(15n4− 4n3+ 6n2− 12n− 5), if n is odd,

with equality holding if and only if V 1 and V 2 are transitive tournaments with
n1 =

 

n
2

£

and n2 =
�

n
2

�

.

Proof.

(i) Since n1 ≥ n2, we have
 

n
2

£

≤ n1 ≤ n− 1 and 1 ≤ n2 ≤
�

n
2

�

. Let n2 = x
and n1 = n− x . Using Theorem 2.12, we have

LSM3(G)≥−
�

n4
1+ n4

2

�

+ (3n+ 6)
�

n3
1+ n3

2

�

− (3n2+ 12n+ 6)
�

n2
1+ n2

2

�

+ n(n3+ 6n2+ 9n+ 4)− 2(3n2+ 3n+ 1)

=−
�

(n− x)4+ x4
�

+ (3n+ 6)
�

(n− x)3+ x3
�

− (3n2+ 12n+ 6)
�

(n− x)2+ x2
�

+ n(n3+ 6n2+ 9n+ 4)− 2(3n2+ 3n+ 1)

=−2x4+ 4nx3− (3n2+ 6n+ 12)x2+ (n3+ 6n2+ 12n)x

− (3n2+ 2n+ 2).

Let f (x) =−2x4+4nx3− (3n2+6n+12)x2+(n3+6n2+12n)x− (3n2+
2n+ 2). Next, we prove that f (x) is an increasing function when 1≤ x ≤ n

2
.

Since f ′(x) =−8x3+12nx2− (6n2+12n+24)x +(n3+6n2+12n) and
f ′′(x) = −24x2 + 24nx − (6n2 + 12n+ 24), we get f ′′(x) < 0 when 1 ≤
x ≤ n

2
. So, f ′(x) is a decreasing function and f ′(x)≥ f ′(x)min = f ′( n

2
) = 0.

Hence, f (x) is an increasing function when 1 ≤ x ≤ n
2
, and consequently

f (x)≥ f (1) = n3+ 8n− 16.
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Concluding, we obtain LSM3(G)≥ n3+ 8n− 16, with equality holding if
and only if V 1 and V 2 are in-trees with n1 = n− 1 and n2 = 1.

(ii) Similarly as in the proof of (i), using Theorem 2.12, we have

LSM3(G)≤−
1

4

�

n4
1+ n4

2

�

+
�

n+
5

2

�

�

n3
1+ n3

2

�

−
�

3n2

2
+

9n

2
+

1

4

�

�

n2
1+ n2

2

�

+ n2
�

n2+
3n

2
+

1

2

�

=−
1

4

�

(n− x)4+ x4
�

+
�

n+
5

2

�

�

(n− x)3+ x3
�

−
�

3n2

2
+

9n

2
+

1

4

�

�

(n− x)2+ x2
�

+ n2
�

n2+
3n

2
+

1

2

�

=−
1

2
x4+ nx3−

1

2
(3n2+ 3n+ 1)x2+

1

2
(2n3+ 3n2+ n)x

+
1

4
(n4− 2n3+ n2).

Let g(x) =−1
2

x4+nx3− 1
2
(3n2+3n+1)x2+ 1

2
(2n3+3n2+n)x+ 1

4
(n4−

2n3+n2). Next, we prove that g(x) is an increasing function when 1≤ x ≤ n
2
.

Since g ′(x) = −2x3 + 3nx2 − (3n2 + 3n+ 1)x + 1
2
(2n3 + 3n2 + n) and

g ′′(x) =−6x2+6nx− (3n2+3n+1), we get g ′′(x)< 0 when 1≤ x ≤ n
2
. So,

g ′(x) is a decreasing function and g ′(x)≥ g ′(x)min = g ′( n
2
) = 0. Hence, g(x)

is an increasing function when 1≤ x ≤ n
2
, and consequently g(x)≤ g( n

2
).

Substituting x = n
2

if n is even, and x =
�

n
2

�

= n−1
2

if n is odd, we obtain
LSM3(G) ≤

1
32
(15n4 − 4n3 + 12n2) for even n, and LSM3(G) ≤

1
32
(15n4 −

4n3+ 6n2 − 12n− 5) for odd n, with equality holding if and only if V 1 and
V 2 are transitive tournaments with n1 =

 

n
2

£

and n2 =
�

n
2

�

.

2.4 Concluding remarks

In Subsection 2.2.1 of this chapter, we fully characterized the extremal di-
graphs with a fixed dichromatic number that attain the minimal and maximal
second Laplacian spectral moment among all join digraphs in Gn,r . From
Theorem 2.5 and Theorem 2.6, we know that the extremal digraphs are
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isomorphic to
∨r

i=1 V i, where each V i is an in-tree with n1 = n− r + 1 and
n2 = · · · = nr = 1, and each V i is a transitive tournament with ni =

 

n
r

£

or
ni =

�

n
r

�

, respectively.

In addition, in Subsection 2.2.2 of this chapter, we characterized the
extremal digraphs that attain the minimal and maximal second Laplacian
spectral moment among all digraphs in Gn,r . In particular, the extremal
digraphs in Theorem 2.8 for the minimal second Laplacian spectral moment
differ considerably from those in Theorem 2.5, and required a different proof
approach.

We were unable to provide such a full characterization of the extremal di-
graphs for the third Laplacian spectral moment. However, restricting ourselves
to join digraphs we demonstrated that in-trees and transitive tournaments
play a key role there, too. From Theorem 2.12, we know that also for the
third Laplacian spectral moment the extremal join digraphs are isomorphic to
∨r

i=1 V i , where each V i is either an in-tree (for attaining the minimum), or a
transitive tournament (for the maximum), but we could not determine the
optimum values of ni , except for the case when r = 2. For r = 2, we obtained
a full characterization in Corollary 2.13, showing exactly the same extremal
join digraphs as for the second Laplacian spectral moment. We complete
this section with some examples of the extremal join digraphs in Gn,3 for
the third Laplacian spectral moment, as shown in Table 2.2. Here we used
G[n1, n2, n3] to denote the digraph V 1 ∨ V 2 ∨ V 3, and we used Lemma 2.11
and Theorem 2.12 to determine the extremal join digraphs.

From Table 2.2, we conclude that the extremal join digraphs in Gn,3 for
the third Laplacian spectral moment are the same as for the second Laplacian
spectral moment for n = 5,6,7,8,9,10,15,20. This might suggest that the
extremal join digraphs in Gn,3 for the second and third Laplacian spectral
moment are the same for all values of n, but we were unable to confirm this.
We leave the full characterization of the extremal join digraphs in Gn,r for the
third Laplacian spectral moment as an open problem.

Problem 2.1. Characterize the extremal digraphs for the third Laplacian
spectral moment among all join digraphs with a fixed dichromatic number.

We have partially solved the above problem by narrowing the extremal
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48 Chapter 2. Bounds for the Laplacian spectral moments of digraphs

Table 2.2: The extremal join digraphs in Gn,3 for the third
Laplacian spectral moment.

Gn,3

The minimal join digraphs

for the third Laplacian

spectral moment when

each V i is an in-tree

The maximal join digraphs

for the third Laplacian

spectral moment when

each V i is a transitive tournament

G5,3 G[3, 1,1] G[2,2, 1]

G6,3 G[4, 1,1] G[2,2, 2]

G7,3 G[5, 1,1] G[3,2, 2]

G8,3 G[6, 1,1] G[3,3, 2]

G9,3 G[7, 1,1] G[3,3, 3]

G10,3 G[8, 1,1] G[4,3, 3]

G15,3 G[13,1, 1] G[5,5, 5]

G20,3 G[18,1, 1] G[7,7, 6]

digraphs down to join digraphs
∨r

i=1 V i , where either each V i is an in-tree or
each V i is a transitive tournament. In this chapter, we did not consider the
k-th Laplacian spectral moment for higher values of k ≥ 4. We leave this as
another challenging open problem.

Problem 2.2. Characterize the extremal digraphs for the k-th Laplacian
spectral moment among all join digraphs with a fixed dichromatic number,
for a fixed integer k ≥ 4.

We also leave the characterization for general digraphs with a fixed dichro-
matic number as an open problem. In the light of Theorem 2.8, we think this
could be particularly challenging for the minimal spectral moments.

Problem 2.3. Characterize the extremal digraphs for the k-th Laplacian
spectral moment among all digraphs with a fixed dichromatic number, for a
fixed integer k ≥ 3.
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Chapter 3

Bounds for the Aα spectral
moments of digraphs

In this chapter, we obtain the digraphs which attain the minimal and maximal
Aα energy (also known as the second Aα spectral moment) within classes of
digraphs with a fixed dichromatic number. We also determine sharp bounds
for the third Aα spectral moment within the special subclass which we define
as join digraphs. These results generalize the results about the second and
third Laplacian spectral moments of digraphs in Chapter 2.

3.1 Introduction

As mentioned in Chapter 2, our research is motivated by different variants
of the concept of graph energy. This concept was originally introduced by
Gutman [45], based on the eigenvalues of the adjacency matrix. Graph
energies are mainly studied within the area which is usually referred to as
chemical graph theory. Later variants of graph energy are based on the
eigenvalues of other matrices associated with the graph, like the (signless)
Laplacian matrix. These concepts have also been extended to digraphs.

In order to study the differences and similarities of the adjacency matrix
and the signless Laplacian matrix, Nikiforov [99] proposed to study what he

49
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50 Chapter 3. Bounds for the Aα spectral moments of digraphs

named the Aα-matrix of a graph, which is a convex linear combination of α
times its diagonal degree matrix plus 1−α times its adjacency matrix. This is
a natural way to get a grip on the influence of the summands in the expression
of the signless Laplacian matrix on the behavior of the matrix. In [89], Liu et
al. extended the concept of Aα-matrix of a graph to a digraph. The Aα-matrix
of a digraph G is defined by

Aα(G) = αD+(G) + (1−α)A(G),

where α ∈ [0,1). Following up on this idea, several groups of researchers
have studied the properties of this Aα-matrix and its counterpart for digraphs
(See, e.g., [4,12,37,39,40,69,70,75–77,81,83,85,86,90,100,101,130,133,
134,139]).

For a fixed nonnegative integer k, the k-th Aα spectral moment of a digraph
G is defined as

SM k
α(G) =

n
∑

i=1

λk
αi ,

where λαi are the eigenvalues of Aα(G). In Chapter 2, we define the k-th
Laplacian spectral moment of G as

LSMk(G) =
n
∑

i=1

λk
i ,

where λi are the eigenvalues of L(G). We characterized the digraphs which
attain the minimal and maximal Laplacian energy within classes of digraphs
with a fixed dichromatic number. And we determined sharp bounds for the
third Laplacian spectral moment within the special subclass which we define as
join digraphs. Note that, we mainly consider the join digraph

∨r
i=1 V i which

each V i is a connected acyclic digraph with ni vertices with
∑r

i=1 ni = n and
n1 ≥ n2 ≥ · · · ≥ nr . In this chapter, we continue this line of research and
our results are closely related to the results we obtained in Chapter 2 about
the second and third Laplacian spectral moments of digraphs with a fixed
dichromatic number.

We start with two results on the energy in terms of the second spectral
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3.1. Introduction 51

moments of the Laplacian matrix and the Aα-matrix. The first result is due to
Perera and Mizoguchi. In [107], they studied the Laplacian energy LE(G) of
a digraph by using the second spectral moment. See Lemma 2.1,

LE(G) =
n
∑

i=1

(d+i )
2+ c2.

This is followed by a result due to Xi. In [127], she defined and studied the
Aα energy Eα(G) of a digraph by using the second spectral moment.

Lemma 3.1 (Xi [127]). Let G be a digraph of order n. Then

Eα(G) = α
2

n
∑

i=1

(d+i )
2+ (1−α)2c2.

In Chapter 2, we studied the third Laplacian spectral moment LSM3(G)
of a digraph. See Lemma 2.10,

LSM3(G) =
n
∑

i=1

(d+i )
3+ 3

n
∑

i=1

d+i c(i)2 − c3.

In our first new contribution, we extend the concept to the Aα-matrix of a
digraph and derive the following expression for the third spectral moment.

Lemma 3.2. Let G be a digraph of order n. Then

SM3
α(G) = α

3
n
∑

i=1

(d+i )
3+ 3α(1−α)2

n
∑

i=1

d+i c(i)2 + (1−α)
3c3.

Proof. The Aα-matrix of G is defined by

Aα(G) = αD+(G) + (1−α)A(G).
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52 Chapter 3. Bounds for the Aα spectral moments of digraphs

Then for Aα(G) = (αi j)n×n,

αi j =











αd+i , if i = j,

1−α, if (vi , v j) ∈A (G),

0, otherwise,

and we have

SM3
α(G) =

n
∑

i=1

λ3
αi = t r

�

(Aα(G))
3
�

=
n
∑

j1=1

n
∑

j2=1

n
∑

j3=1

α j1 j2α j2 j3α j3 j1 .

For the different (possible) choices of j1, j2, j3, we presented the respective
values in Table 3.1.

Table 3.1: The values of
∑n

j1=1

∑n
j2=1

∑n
j3=1α j1 j2α j2 j3α j3 j1 for

different choices of j1, j2, j3.

j1, j2, j3
∑n

j1=1

∑n
j2=1

∑n
j3=1α j1 j2α j2 j3α j3 j1

j1 = j2

j2 = j3
j3 = j1 α3

∑n
i=1(d

+
i )

3

j3 6= j1 non-existent

j2 6= j3
j3 = j1 non-existent

j3 6= j1 α(1−α)2
∑n

i=1 d+i c(i)2

j1 6= j2

j2 = j3
j3 = j1 non-existent

j3 6= j1 α(1−α)2
∑n

i=1 d+i c(i)2

j2 6= j3
j3 = j1 α(1−α)2

∑n
i=1 d+i c(i)2

j3 6= j1 (1−α)3c3

So, by summing up all the values from the table, we get

SM3
α(G) = α

3
n
∑

i=1

(d+i )
3+ 3α(1−α)2

n
∑

i=1

d+i c(i)2 + (1−α)
3c3.
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3.2. Extremal digraphs for the Aα energy 53

Comparing the expressions for L(G) and Aα(G) in Lemmas 2.1, 2.10, 3.1
and 3.2, we can easily deduce that the coefficients of α2 and α3 for the second
and third spectral moments of Aα(G) are equal to the second and third spectral
moments of L(G), respectively.

Eα(G) = α
2

n
∑

i=1

(d+i )
2+ (1−α)2c2

= α2

 

n
∑

i=1

(d+i )
2+ c2

!

− 2αc2+ c2

= α2 LE(G) + (−2α+ 1)c2,

and

SM3
α(G) = α

3
n
∑

i=1

(d+i )
3+ 3α(1−α)2

n
∑

i=1

d+i c(i)2 + (1−α)
3c3

= α3

 

n
∑

i=1

(d+i )
3+ 3

n
∑

i=1

d+i c(i)2 − c3

!

+ 3α2

 

−2
n
∑

i=1

d+i c(i)2 + c3

!

+ 3α

 

n
∑

i=1

d+i c(i)2 − c3

!

+ c3

= α3 LSM3(G) + 3α(−2α+ 1)
n
∑

i=1

d+i c(i)2 + (3α
2− 3α+ 1)c3.

In this sense, this results extend the results in Chapter 2. In the next
sections, we use the above expression for Eα(G) to characterize the digraphs
attaining the minimal and maximal Aα energy among all join digraphs and
all digraphs in Gn,r , and we determine sharp bounds for the third Aα spectral
moment among all join digraphs in Gn,r .

3.2 Extremal digraphs for the Aα energy

In this section, we will characterize the digraphs which attain the minimal
and maximal Aα energy Eα(G) among all join digraphs and all digraphs in
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54 Chapter 3. Bounds for the Aα spectral moments of digraphs

Gn,r . First, we determine the extremal digraphs for the Aα energy among all
join digraphs

∨r
i=1 V i in Gn,r .

From Lemma 2.3, we get

n− 1≤ LE(G)≤
n(n− 1)(2n− 1)

6
,

the first equality holds if and only if G is an in-tree, and the second equality
holds if and only if G is a transitive tournament.

We make use of the above result and its consequence for Eα(G). Since
Eα(G) = α2 LE(G) + (−2α+ 1)c2, the following corollary is immediate.

Corollary 3.3. Let G be an acyclic digraph of order n. Then

α2(n− 1)≤ Eα(G)≤
α2n(n− 1)(2n− 1)

6
.

Moreover, the first inequality is an equality if and only if G is an in-tree, and the
second inequality is an equality if and only if G is a transitive tournament.

Using Lemma 2.4, we have the following results.

Theorem 3.4. Let G =
∨r

i=1 V i . Then the following inequalities hold:

(i)

Eα(G)≥ α2
�

(r − 1)n2+ r2n− r3
�

+ (−2α+ 1)
�

2(r − 1)n− r2+ r
�

,

with equality holding if and only if each V i is an in-tree with n1 = n− r+1 and
n2 = · · ·= nr = 1.

(ii) If r | n,

Eα(G)≤ α2

�

�

1+
1

3r2 −
1

r

�

n3−
n2

2r
+

n

6

�

+ (−2α+ 1)
�

1−
1

r

�

n2,

with equality holding if and only if each V i is a transitive tournament with
ni =

n
r
.

(iii) If r - n,

Eα(G)≤ α2
�

n3+
n

6
+ p− q

�

+ (−2α+ 1)
�

n2−
¡n

r

¤2�

n− r
�n

r

��
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+
�n

r

�2�

n− r
¡n

r

¤�

�

,

where p =
 

n
r

£2 �
n− r

�

n
r

���

1
3

 

n
r

£

− n− 1
2

�

and q =
�

n
r

�2 �
n− r

 

n
r

£�

�

1
3

�

n
r

�

− n− 1
2

�

. The inequality is an equality if and only if each V i is a
transitive tournament, with ns =

 

n
r

£

for s = 1, 2, . . . , n− r
�

n
r

�

and nt =
�

n
r

�

for t = n− r
�

n
r

�

+ 1, n− r
�

n
r

�

+ 2, . . . , r.

Proof. Let {v i
1, v i

2, . . . , v i
ni
} be the vertex set of V i, where i = 1,2, . . . , r. Let

d+G (v
i
j) be the outdegree of v i

j in G and d+
V i (v

i
j) be the outdegree of v i

j in V i,
where j = 1,2, . . . , ni . Using Lemma 3.1, we have

Eα(G) = α
2

n
∑

i=1

(d+i )
2+ (1−α)2c2

= α2
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�2
+ (1−α)22

∑

i< j

nin j

= α2
r
∑

i=1

ni
∑

j=1

�

n− ni + d+
V i (v

i
j)
�2
+ (1−α)2







 

r
∑

i=1

ni

!2

−
r
∑

i=1

n2
i







= α2
r
∑

i=1







ni
∑

j=1

(n− ni)
2+ 2(n− ni)

ni
∑

j=1

d+
V i (v

i
j) +

ni
∑

j=1

�

d+
V i (v

i
j)
�2







+ (1−α)2
 

n2−
r
∑

i=1

n2
i

!

.

Since V i is acyclic and connected, using Karamata’s inequality, we have

ni − 1≤
ni
∑

j=1

d+
V i (v

i
j)≤

ni(ni − 1)
2

,

ni − 1≤
ni
∑

j=1

�

d+
V i (v

i
j)
�2
≤

ni(ni − 1)(2ni − 1)
6

.
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56 Chapter 3. Bounds for the Aα spectral moments of digraphs

In all of the above inequalities, the lower bounds are only attained if V i

is an in-tree, and the upper bounds are only attained if V i is a transitive
tournament.

Hence, we obtain

�

α2
�

n3+ 3n2− (2r − 3)n− r
�

− 2αn2+ n2
�

+α2
r
∑

i=1

n3
i

−
�

α2(2n+ 3)− 2α+ 1
�

r
∑

i=1

n2
i ≤ Eα(G)

≤
�

α2
�

n3+
n

6

�

− 2αn2+ n2
�

+
α2

3

r
∑

i=1

n3
i −
�

α2
�

n+
1

2

�

− 2α+ 1
� r
∑

i=1

n2
i .

Let f (x) = x2(a−bx) and F(x1, x2, . . . , xr) =
∑r

i=1 f (x i), where
∑r

i=1 x i =
n and 1 ≤ x i ≤ n− r + 1. From Lemma 2.4, if x i − x j ≥ 2 and x j <

a
3b
− 1

for some x i and x j , we have f (x i − 1) + f (x j + 1)< f (x i) + f (x j). Then we
have F(x1, . . . , x i − 1, . . . , x j + 1, . . . , xr)< F(x1, . . . , x i , . . . , x j , . . . , xr).

For

α2
r
∑

i=1

n3
i −
�

α2(2n+ 3)− 2α+ 1
�

r
∑

i=1

n2
i

=
r
∑

i=1

n2
i

�

α2ni −
�

α2(2n+ 3)− 2α+ 1
��

=−
r
∑

i=1

n2
i

�

α2(2n+ 3)− 2α+ 1−α2ni

�

,

let f1(ni) = n2
i

�

α2(2n+ 3)− 2α+ 1−α2ni

�

. Since α2(2n+3)−2α+1
3α2 − 1 =

2α2n−2α+1
3α2 > n−r

2
≥ n j if ni − n j ≥ 2, F1(n1, n2, . . . , nr) =

∑r
i=1 f1(ni) is

maximal when n1 = n− r+1 and n2 = · · · = nr = 1. That is, Eα(G) is minimal
when n1 = n− r + 1 and n2 = · · ·= nr = 1.

Similarly, for

α2

3

r
∑

i=1

n3
i −
�

α2
�

n+
1

2

�

− 2α+ 1
� r
∑

i=1

n2
i
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=
r
∑

i=1

n2
i

�

α2

3
ni −

�

α2
�

n+
1

2

�

− 2α+ 1
�

�

=−
r
∑

i=1

n2
i

�

α2
�

n+
1

2

�

− 2α+ 1−
α2

3
ni

�

,

let f2(ni) = n2
i

�

α2
�

n+ 1
2

�

− 2α+ 1− α2

3
ni

�

. Since
α2
�

n+ 1
2

�

−2α+1

α2 − 1 =
α2
�

n− 1
2

�

−2α+1

α2 > n−r
2
≥ n j if ni − n j ≥ 2, F2(n1, n2, . . . , nr) =

∑r
i=1 f2(ni) is

minimal when |ni − n j| ≤ 1. That is, Eα(G) is maximal when ni =
 

n
r

£

or
ni =

�

n
r

�

.

Concluding,
(i) Eα(G)

≥
�

α2
�

n3 + 3n2 − (2r − 3)n− r
�

− 2αn2 + n2
�

+α2
r
∑

i=1

n3
i −
�

α2(2n+ 3)− 2α+ 1
�

r
∑

i=1

n2
i

≥
�

α2
�

n3 + 3n2 − (2r − 3)n− r
�

− 2αn2 + n2
�

+α2
�

(n− r + 1)3 + (r − 1)
�

−
�

α2(2n+ 3)− 2α+ 1
��

(n− r + 1)2 + (r − 1)
�

= α2
�

(r − 1)n2 + r2n− r3
�

− 2α
�

2(r − 1)n− r2 + r
�

+
�

2(r − 1)n− r2 + r
�

= α2
�

(r − 1)n2 + r2n− r3
�

+ (−2α+ 1)
�

2(r − 1)n− r2 + r
�

,

with equality holding if and only if each V i is an in-tree with n1 = n− r + 1
and n2 = · · ·= nr = 1.
(ii) If r | n, Eα(G)

≤
�

α2
�

n3 +
n

6

�

− 2αn2 + n2
�

+
α2

3

r
∑

i=1

n3
i −
�

α2
�

n+
1

2

�

− 2α+ 1
� r
∑

i=1

n2
i

≤
�

α2
�

n3 +
n

6

�

− 2αn2 + n2
�

+
α2

3
r
�n

r

�3

−
�

α2
�

n+
1

2

�

− 2α+ 1
�

r
�n

r

�2

= α2

�

�

1+
1

3r2 −
1

r

�

n3 −
n2

2r
+

n

6

�

− 2α
�

1−
1

r

�

n2 +
�

1−
1

r

�

n2

= α2

�

�

1+
1

3r2 −
1

r

�

n3 −
n2

2r
+

n

6

�

+ (−2α+ 1)
�

1−
1

r

�

n2,

with equality holding if and only if each V i is a transitive tournament with
ni =

n
r
.
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(iii) If r - n, Eα(G)

≤
�

α2
�

n3 +
n

6

�

− 2αn2 + n2
�

+
r
∑

i=1

n2
i

�

α2
�

1

3
ni − n−

1

2

�

+ 2α− 1
�

≤
�

α2
�

n3 +
n

6

�

− 2αn2 + n2
�

+
¡n

r

¤2�

n− r
�n

r

��

�

α2
�

1

3

¡n

r

¤

− n−
1

2

�

+ 2α− 1
�

−
�n

r

�2�

n− r
¡n

r

¤�

�

α2
�

1

3

�n

r

�

− n−
1

2

�

+ 2α− 1
�

= α2
�

n3 +
n

6
+ p− q

�

+ (−2α+ 1)
�

n2 −
¡n

r

¤2�

n− r
�n

r

��

+
�n

r

�2�

n− r
¡n

r

¤�

�

,

where p =
 

n
r

£2 �
n− r

�

n
r

���

1
3

 

n
r

£

− n− 1
2

�

and q =
�

n
r

�2 �
n− r

 

n
r

£�

�

1
3

�

n
r

�

− n− 1
2

�

. The inequality is an equality if and only if each V i is a
transitive tournament, with ns =

 

n
r

£

for s = 1, 2, . . . , n− r
�

n
r

�

and nt =
�

n
r

�

for t = n− r
�

n
r

�

+ 1, n− r
�

n
r

�

+ 2, . . . , r.

This completes the proof.

For the join digraphs G =
∨r

i=1 V i in Gn,r , Eα(G) and LE(G) have the
same extremal digraphs by Theorem 3.4 above and Theorems 2.5, 2.6 in
Chapter 2. Actually, we know c2 = n2−

∑r
i=1 n2

i . Using Karamata’s inequality,
∑r

i=1 n2
i is maximal when n1 = n− r + 1 and n2 = · · ·= nr = 1 and minimal

when |ni − n j| ≤ 1. Since

Eα(G) = α
2 LE(G) + (−2α+ 1)c2 = α

2 LE(G) + (−2α+ 1)

 

n2−
r
∑

i=1

n2
i

!

,

in case 0 ≤ α ≤ 1
2
, we can deduce that Eα(G) and LE(G) have the same

extremal digraphs directly. But when 1
2
< α < 1, we can not directly get the

bounds of Eα(G) based on the bounds of LE(G). In particular, when α = 1
2
,

Yang and Wang [136] have shown that results on the Laplacian energy of
a digraph are also applicable to its signless Laplacian energy. We omit the
details.

Next, we will determine the digraphs which attain the minimal and max-
imal Aα energy Eα(G) among all digraphs in Gn,r . Using Lemmas 1.1, 1.2
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3.2. Extremal digraphs for the Aα energy 59

and 2.7, in Chapter 2, we were able to characterize the digraphs which at-
tain the minimal Laplacian energy LE(G) among all digraphs in Gn,r , see
Theorem 2.8.

From Theorem 2.8, it is rather natural to expect that the same digraphs
attain the minimal Aα energy among all digraphs in Gn,r . However, the follow-
ing two digraphs illustrated in Figure 3.1 show that the minimal digraphs for
the Aα energy and the Laplacian energy can be different (when α is in some
range).

1
G

2
G

Figure 3.1: Different minimal digraphs for LE(G) and Eα(G).

It is easy to check that both digraphs illustrated in Figure 3.1 belong to
G5,3. From Theorem 2.8, we know that G1 is an example of a digraph attaining
the minimal Laplacian energy, whereas G2 is not. But for the Aα energy, we
obtain Eα(G1) = 14α2 + 6(1− α)2 and Eα(G2) = 30α2 + 4(1− α)2. Hence,
Eα(G1) ≥ Eα(G2) when α ∈ [0, 2

p
2−1
7
], and E 1

4
(G1) > E 1

4
(G2). Hence, the

minimal digraphs for the Aα energy and the Laplacian energy can be different
when α is in some range. It is natural to ask what happens for other values
of α outside this range. In fact, our next result shows that the Aα energy
and Laplacian energy among all digraphs in Gn,r have the same minimal
digraphs when α ∈ [1

2
, 1). We need the Lemma 2.7 and its straightforward

consequence.

Using Lemma 2.7, it is easy to prove the following corollary of the above
lemma.
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Corollary 3.5. Let G be a digraph in Gn,r , and let G′ be an r-critical subdigraph
of G. If G attains the minimal Aα energy Eα(G) among all digraphs in Gn,r , then
d+G (v) = 1 for any v ∈ V (G) \ V (G′) and d+G (u) = d+G′(u) for any u ∈ V (G′).

Proof. Let G′ of order n′ be an r-critical subdigraph of G. Then using
Lemma 2.7, we know

LE(G)≥
∑

v∈V (G)\V (G′)

�

d+G (v)
�2
+
∑

u∈V (G′)

�

d+G (u)
�2
+ c2(G

′)

≥
∑

v∈V (G)\V (G′)

1+
∑

u∈V (G′)

�

d+G′(u)
�2
+ c2(G

′)

= LE(G′) + n− n′.

So,

Eα(G)≥ α2







∑

v∈V (G)\V (G′)

�

d+G (v)
�2
+
∑

u∈V (G′)

�

d+G (u)
�2






+ (1−α)2c2(G

′)

≥ α2







∑

v∈V (G)\V (G′)

1+
∑

u∈V (G′)

�

d+G′(u)
�2






+ (1−α)2c2(G

′)

= Eα(G
′) +α2(n− n′).

Hence, if G attains the minimal Aα energy Eα(G) among all digraphs in
Gn,r , then d+G (v) = 1 for any v ∈ V (G) \ V (G′) and d+G (u) = d+G′(u) for any
u ∈ V (G′).

We use the above corollary to prove our next result.

Theorem 3.6. Let G be a digraph in Gn,r . Then the following inequalities hold:

(i) If r = 2, we have

Eα(G)≥







4α2− 4α+ 2, if n= 2,

α2n, if n≥ 3.



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 71PDF page: 71PDF page: 71PDF page: 71

3.2. Extremal digraphs for the Aα energy 61

If n = 2, the inequality is an equality if and only if G is a directed cycle C2. If
n≥ 3, the inequality is an equality if and only if G contains a directed cycle Cn′

(n′ ≥ 3) and every component (if any) of G −V (Cn′) is an in-tree, the root of
which is an inneighbor of exactly one vertex of Cn′ .

(ii) When α ∈ [1
2
, 1) and r ≥ 3, we have

Eα(G)≥ α2(n+ r3− r2− r) + (−2α+ 1)r(r − 1),

with equality holding if and only if G contains a bidirected complete graph
↔
K r

and every component (if any) of G −V (
↔
K r) is an in-tree, the root of which is

an inneighbor of exactly one vertex of
↔
K r .

Proof. Let G be a digraph in Gn,r . Then G must contain an induced subdigraph
G′ of order n′ that is r-critical. From Corollary 3.5, we obtain that if G attains
the minimal Aα energy Eα(G) among all digraphs in Gn,r , then d+G (v) = 1
for any v ∈ V (G) \ V (G′) and d+G (u) = d+G′(u) for any u ∈ V (G′). That is, G
contains an r-critical digraph G′ and every component of G − V (G′) is an
in-tree, the root of which is an inneighbor of exactly one vertex of G′. From
the proof of Corollary 3.5, we also get

Eα(G)≥ Eα(G
′)+α2(n−n′) = α2

∑

u∈V (G′)

�

d+G′(u)
�2
+(1−α)2c2(G

′)+α2(n−n′).

Next, we distinguish the cases r = 2 and r ≥ 3.

Case 1. r = 2.

We consider the two subcases n= 2 and n≥ 3.

Case 1.1. Suppose n= 2. Then G = G′ = C2, and Eα(C2) = 4α2− 4α+ 2.

Case 1.2. Suppose n ≥ 3. Using Lemma 1.1, we get that d+G′(u) ≥ r − 1 = 1
for any u ∈ V (G′). If d+G′(u) = 1 for any u ∈ V (G′), using Lemma 1.2, we can
get c2(G′) = 0 if G′ is a directed cycle of length n′ ≥ 3. So, we conclude that

Eα(G)≥ α2
∑

u∈V (G′)

�

d+G′(u)
�2
+ (1−α)2c2(G

′) +α2(n− n′)≥ α2n,
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with equality if and only if G contains a directed cycle Cn′ (n′ ≥ 3) and
every component (if any) of G−V (Cn′) is an in-tree, the root of which is an
inneighbor of exactly one vertex of Cn′ .

Case 2. r ≥ 3.

Then d+G′(u)≥ r − 1 for any u ∈ V (G′) by Lemma 1.1.

If n′ = r, then d+G′(u) = r−1 for any u ∈ V (G′). From Lemma 1.2, we have
r = 3 and G′ is a bidirected cycle of odd length n′ = 3, or G′ is a bidirected
complete graph of order r ≥ 4. That is, if n′ = r, then d+G′(u) = r − 1 for any

u ∈ V (G′), G′ =
↔
K r of order r ≥ 3, and

α2
∑

u∈V (
↔
K r )

�

d+↔
K r

(u)
�2

+ (1−α)2c2(
↔
K r) +α

2(n− r)

= α2r(r − 1)2+ (1−α)2r(r − 1) +α2(n− r).

If n′ = r + 1, since d+G′(u) ≥ r − 1 for any u ∈ V (G′), we get e(G′) ≥

(r + 1)(r − 1) and c2(G′)
2
≥ e(G′)− (r+1)r

2
. So

Eα(G)≥ α2
∑

u∈V (G′)

�

d+G′(u)
�2
+ (1−α)2c2(G

′) +α2(n− n′)

≥ α2(r + 1)(r − 1)2+ (1−α)2(r(r − 1)− 2) +α2(n− r − 1).

If n′ ≥ r + 2, then

Eα(G)≥ α2
∑

u∈V (G′)

�

d+G′(u)
�2
+ (1−α)2c2(G

′) +α2(n− n′)

≥ α2n′(r − 1)2+ 0+α2(n− n′).

When n′ = r + 1 and α ∈ [1
2
, 1), we have

�

α2(r + 1)(r − 1)2+ (1−α)2(r(r − 1)− 2) +α2(n− r − 1)
�

−
�

α2r(r − 1)2+ (1−α)2r(r − 1) +α2(n− r)
�

= α2(r2− 2r − 2) + 4α− 2

> 0.
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When n′ ≥ r + 2 and α ∈ (1
2
, 1), we have

�

α2n′(r − 1)2+ 0+α2(n− n′)
�

−
�

α2r(r − 1)2+ (1−α)2r(r − 1) +α2(n− r)
�

= α2r
�

n′(r − 2)− r2+ r + 1)
�

+ (2α− 1)r(r − 1)

≥ α2r
�

(r + 2)(r − 2)− r2+ r + 1
�

+ (2α− 1)r(r − 1)

= α2r(r − 3) + (2α− 1)r(r − 1)

> 0.

And when α= 1
2
, we know E 1

2
(G) = 1

4
LE(G).

Hence, when α ∈ [1
2
, 1), if r ≥ 3,

Eα(G)≥ α2r(r − 1)2+ (1−α)2r(r − 1) +α2(n− r)

= α2(n+ r3− r2− r) + (−2α+ 1)r(r − 1),

with equality holding if and only if G contains a bidirected complete graph
↔
K r

and every component (if any) of G−V (
↔
K r) is an in-tree, the root of which is

an inneighbor of exactly one vertex of
↔
K r .

The next result characterizes the digraphs which attain the maximal
Aα energy Eα(G) among all digraphs in Gn,r . It is an easy consequence of
Theorem 3.4, so we omit the proof.

Theorem 3.7. Let G be a digraph in Gn,r . Then the following inequalities hold:

(i) If r | n,

Eα(G)≤ α2

�

�

1+
1

3r2 −
1

r

�

n3−
n2

2r
+

n

6

�

+ (−2α+ 1)
�

1−
1

r

�

n2,

with equality holding if and only if G =
∨r

i=1 V i and each V i is a transitive
tournament with ni =

n
r
.
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(ii) If r - n,

Eα(G)≤ α2
�

n3+
n

6
+ p− q

�

+ (−2α+ 1)
�

n2−
¡n

r

¤2�

n− r
�n

r

��

+
�n

r

�2�

n− r
¡n

r

¤�

�

,

where p =
 

n
r

£2 �
n− r

�

n
r

���

1
3

 

n
r

£

− n− 1
2

�

and q =
�

n
r

�2 �
n− r

 

n
r

£�

�

1
3

�

n
r

�

− n− 1
2

�

. The inequality is an equality if and only if G =
∨r

i=1 V i and
each V i is a transitive tournament, with ns =

 

n
r

£

for s = 1,2, . . . , n− r
�

n
r

�

and nt =
�

n
r

�

for t = n− r
�

n
r

�

+ 1, n− r
�

n
r

�

+ 2, . . . , r.

3.3 Bounds for the third Aα spectral moment

In this section, we will determine sharp bounds for the third Aα spectral
moment SM3

α(G) of join digraphs G =
∨r

i=1 V i in Gn,r .

Using the expressions for LSM3(G) and SM3
α(G) in Lemmas 2.10 and 3.2,

we can derive that

SM3
α(G) = α

3 LSM3(G) + 3α(−2α+ 1)
n
∑

i=1

d+i c(i)2 + (3α
2− 3α+ 1)c3.

However, this does not imply that we can obtain sharp bounds for SM3
α(G)

directly from the sharp bounds that were obtained for LSM3(G) earlier. We
will first derive an alternative expression for SM3

α(G), making use of the
following earlier result in the proof of Lemma 2.11.

Lemma 3.8. Let G =
∨r

i=1 V i . Then

c3 =
r
∑

i=1

ni
∑

j=1



d+
V i (v i

j)(n− ni) +
∑

s 6=i





ns
∑

t=1

d+V s(vs
t ) + ns

h

(n− ns − ni) + d−
V i (v i

j)
i







 .
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Lemma 3.9. Let G =
∨r

i=1 V i . Then

SM3
α(G) = α

3
r
∑

i=1

ni
∑

j=1

�

n− ni + d+
V i (v i

j)
�3
+ 3α(1−α)2

r
∑

i=1

ni(n− ni)
2

+ 3(1−α)2
r
∑

i=1

ni
∑

j=1

d+
V i (v i

j)(n− ni) + (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni).

Proof. From Lemma 3.2, we obtain

SM3
α(G) = α

3
r
∑

i=1

ni
∑

j=1

�

d+G (v
i
j)
�3
+ 3α(1−α)2

r
∑

i=1

ni
∑

j=1

d+G (v
i
j)c2(v

i
j)

+ (1−α)3c3.

Recall that d+G (v
i
j) = n− ni + d+

V i (v
i
j) and c2(v i

j) = n− ni, for j = 1,2, . . . , ni

and i = 1,2, . . . , r. Then

r
∑

i=1

ni
∑

j=1

d+G (v
i
j)c2(v

i
j) =

r
∑

i=1

ni(n− ni)
2+

r
∑

i=1

e(V i)(n− ni).

By Lemma 3.8,

c3 =
r
∑

i=1

ni
∑

j=1

�

d+
V i (v i

j)(n− ni) +
∑

s 6=i

� ns
∑

t=1

d+V s(vs
t ) + ns

�

(n− ns − ni) + d−
V i (v i

j)
�

��

=
r
∑

i=1

e(V i)(n− ni) +
r
∑

i=1



ni

∑

s 6=i

e(V s) + ni

∑

s 6=i

ns(n− ns − ni) + e(V i)
∑

s 6=i

ns



 .

We also get

3α(1−α)2
r
∑

i=1

e(V i)(n− ni) + (1−α)3
r
∑

i=1

e(V i)(n− ni)

+ (1−α)3
r
∑

i=1

e(V i)
∑

s 6=i

ns = (1−α)2(α+ 2)
r
∑

i=1

e(V i)(n− ni),
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and

(1−α)2(α+ 2)
r
∑

i=1

e(V i)(n− ni) + (1−α)3
r
∑

i=1

ni

∑

s 6=i

e(V s)

= (1−α)2(α+ 2)n
r
∑

i=1

e(V i) + (1−α)2(1−α− 3)
r
∑

i=1

e(V i)ni

+ (1−α)3
r
∑

i=1

ni

∑

s 6=i

e(V s)

= (1−α)2(α+ 2)n
r
∑

i=1

e(V i)− 3(1−α)2
r
∑

i=1

e(V i)ni

+ (1−α)3
r
∑

i=1

ni



e(V i) +
∑

s 6=i

e(V s)





= (1−α)2
r
∑

i=1

e(V i)
�

(α+ 2)n− 3ni
�

+ (1−α)3
r
∑

i=1

ni

r
∑

s=1

e(V s)

= (1−α)2
r
∑

i=1

e(V i)
�

(α+ 2)n− 3ni
�

+ (1−α)3n
r
∑

s=1

e(V s)

= (1−α)2
r
∑

i=1

e(V i)
�

(α+ 2)n− 3ni + (1−α)n
�

= 3(1−α)2
r
∑

i=1

e(V i)(n− ni).

Combining the above equations, we obtain

SM3
α(G) = α

3
r
∑

i=1

ni
∑

j=1

�

n− ni + d+
V i (v i

j)
�3
+ 3α(1−α)2

r
∑

i=1

ni(n− ni)
2

+ 3(1−α)2
r
∑

i=1

ni
∑

j=1

d+
V i (v i

j)(n− ni) + (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni).

Next, using the above expression we will determine sharp bounds for
SM3

α(G) of join digraphs in Gn,r .
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Theorem 3.10. Let G =
∨r

i=1 V i . Then

(i)

SM3
α(G)≥−α

3
r
∑

i=1

n4
i + 3

�

α3(n+ 1) +α(1−α)2
�

r
∑

i=1

n3
i

− 3
�

α3(n2+ 2n+ 2) + 2α(1−α)2n+ (1−α)2
�

r
∑

i=1

n2
i

+α3
�

n(n3+ 3n2+ 9n+ 4)− r(3n2+ 3n+ 1)
�

+ 3α(1−α)2n3

+ 3(1−α)2(n2+ n− rn) + (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is an in-tree.

(ii)
SM3

α(G)≤−
α3

4

r
∑

i=1

n4
i +
�

α3
�

n−
1

2

�

+ 3α(1−α)2 −
3

2
(1−α)2

� r
∑

i=1

n3
i

−
�

α3

�

3n2

2
−

3n

2
+

1

4

�

+ 6α(1−α)2n−
3

2
(1−α)2(n+ 1)

� r
∑

i=1

n2
i

+α3

�

n4 −
3n3

2
+

n2

2

�

+ 3α(1−α)2n3 − (1−α)2
3n2

2

+ (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is a transitive tournament.

Proof. From Lemma 3.9, since

SM3
α(G) = α

3
r
∑

i=1

ni
∑

j=1

�

n− ni + d+
V i (v i

j)
�3
+ 3α(1−α)2

r
∑

i=1

ni(n− ni)
2

+ 3(1−α)2
r
∑

i=1

ni
∑

j=1

d+
V i (v i

j)(n− ni) + (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

and

r
∑

i=1

ni
∑

j=1

�

n− ni + d+
V i (v

i
j)
�3
=

r
∑

i=1

�

ni(n− ni)
3+

ni
∑

j=1

�

d+
V i (v

i
j)
�3
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+ 3(n− ni)
ni
∑

j=1

�

d+
V i (v

i
j)
�2
+ 3(n− ni)

2
ni
∑

j=1

d+
V i (v

i
j)
�

,

we only need to consider the bounds of
∑ni

j=1 d+
V i (v

i
j),
∑ni

j=1

�

d+
V i (v

i
j)
�2

and
∑ni

j=1

�

d+
V i (v

i
j)
�3

. Using Karamata’s inequality, we have

ni − 1≤
ni
∑

j=1

d+
V i (v

i
j)≤

ni(ni − 1)
2

,

ni − 1≤
ni
∑

j=1

�

d+
V i (v

i
j)
�2
≤

ni(ni − 1)(2ni − 1)
6

,

ni − 1≤
ni
∑

j=1

�

d+
V i (v

i
j)
�3
≤

n2
i (ni − 1)2

4
.

In all of the above three inequalities, the lower bounds are only attained if
V i is an in-tree, and the upper bounds are only attained if V i is a transitive
tournament. Combining the above terms, for the lower bound we obtain

SM3
α(G)

≥ α3
r
∑

i=1

�

ni(n− ni)
3+ (ni − 1) + 3(n− ni)(ni − 1) + 3(n− ni)

2(ni − 1)
�

+ 3α(1−α)2
r
∑

i=1

ni(n− ni)
2+ 3(1−α)2

r
∑

i=1

(n− ni)(ni − 1)

+ (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni)

=−α3
r
∑

i=1

n4
i + 3

�

α3(n+ 1) +α(1−α)2
�

r
∑

i=1

n3
i

− 3
�

α3(n2+ 2n+ 2) + 2α(1−α)2n+ (1−α)2
�

r
∑

i=1

n2
i

+α3
�

n(n3+ 3n2+ 9n+ 4)− r(3n2+ 3n+ 1)
�

+ 3α(1−α)2n3
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+ 3(1−α)2(n2+ n− rn) + (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is an in-tree with ni vertices.

For the upper bound we obtain

SM3
α(G)

≤ α3
r
∑

i=1

�

ni(n− ni)
3+

n2
i (ni − 1)2

4
+ 3(n− ni)

ni(ni − 1)(2ni − 1)
6

+ 3(n− ni)
2 ni(ni − 1)

2

�

+ 3α(1−α)2
r
∑

i=1

ni(n− ni)
2

+ 3(1−α)2
r
∑

i=1

(n− ni)
ni(ni − 1)

2
+ (1−α)3

r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni)

=−
α3

4

r
∑

i=1

n4
i +
�

α3
�

n−
1

2

�

+ 3α(1−α)2−
3

2
(1−α)2

� r
∑

i=1

n3
i

−
�

α3

�

3n2

2
−

3n

2
+

1

4

�

+ 6α(1−α)2n−
3

2
(1−α)2(n+ 1)

� r
∑

i=1

n2
i

+α3

�

n4−
3n3

2
+

n2

2

�

+ 3α(1−α)2n3− (1−α)2
3n2

2

+ (1−α)3
r
∑

i=1

ni

∑

s 6=i

ns(n− ns − ni),

with equality holding if and only if each V i is a transitive tournament with ni

vertices.

Unfortunately, the above expressions for the lower and upper bounds still
contain ni , and we see no way to get rid of these terms. Hence, we did not de-
rive tight bounds for SM3

α(G) similar to the bounds in Theorem 3.4. However,
we can obtain such tight bounds for SM3

α(G) among the join digraphs in Gn,2.

Corollary 3.11. Let G = V 1 ∨ V 2. Then

(i) SM3
α(G)≥ α

3
�

n3+ 8n− 16
�

+ 3α2(−2n2+ 3n− 2) + 3α(n2− 3n+ 4) +
3(n− 2),
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with equality holding if and only if V 1 and V 2 are in-trees with n1 = n− 1 and
n2 = 1.

(ii) SM3
α(G)≤































1
32

�

α3(15n4− 4n3+ 12n2)− 12α2(3n3+ 2n2)

+48αn2+ 12(n3− 2n2)
�

, if n is even,

1
32

�

α3(15n4− 4n3+ 6n2− 12n− 5)

−12α2(3n3+ 2n2− 3n− 2)

+48α(n2− 1) + 12(n3− 2n2− n+ 2)
�

, if n is odd,

with equality holding if and only if V 1 and V 2 are transitive tournaments with
n1 =

 

n
2

£

and n2 =
�

n
2

�

.

Proof.

(i) If r = 2, n = n1 + n2. Let n2 = x and n1 = n− x , where 1 ≤ n2 ≤
�

n
2

�

.
Using Theorem 3.10, we only need to consider

−α3
�

x4+ (n− x)4
�

+ 3
�

α3(n+ 1) +α(1−α)2
��

x3+ (n− x)3
�

− 3
�

α3(n2+ 2n+ 2) + 2α(1−α)2n+ (1−α)2
��

x2+ (n− x)2
�

.

Let f (x) = a
�

x4+ (n− x)4
�

+ b
�

x3+ (n− x)3
�

+ c
�

x2+ (n− x)2
�

,
where a =−α3, b = 3

�

α3(n+ 1)+α(1−α)2
�

and c =−3
�

α3(n2+ 2n+ 2)+
2α(1−α)2n+ (1−α)2

�

. Then

f (x) = 2ax4− 4anx3+ (6an2+ 3bn+ 2c)x2− (4an3+ 3bn2+ 2cn)x

+ (an4+ bn3+ cn2).

Next, we prove that f (x) is an increasing function when 1≤ x ≤ n
2
.

When 1≤ x ≤ n
2
, since

f ′(x) = 8ax3− 12anx2+ 2(6an2+ 3bn+ 2c)x − (4an3+ 3bn2+ 2cn),

f ′′(x) = 24ax2− 24anx + 2(6an2+ 3bn+ 2c)

and
f ′′′(x) = 48ax − 24an≥ 0,
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f ′′(x) is an increasing function and

f ′′(x)max = f ′′(
n

2
) = 6an2+ 6bn+ 4c

=−6α(2α2− 2α+ 1)n− 12(2α3+α2− 2α+ 1).

Since 2α2−2α+1> 0 and 2α3+α2−2α+1> 0 when α ∈ [0, 1), f ′′(x)≤ 0.
So f ′(x) is a decreasing function and

f ′(x)min = f ′(
n

2
) = 0.

Hence, f ′(x) ≥ 0 and f (x) is an increasing function when 1 ≤ x ≤ n
2
, and

consequently

f (x)≥ f (1) =−α3
�

n4+ 5n3+ 3n2− 10n+ 14
�

+ 3α2(2n3− 3n2+ 4n− 2)

− 3α(n3− 3n2+ 5n− 4)− 3(n2− 2n+ 2).

Concluding, SM3
α(G) is minimal when n1 = n− 1 and n2 = 1. Thus,

SM3
α(G)≥ α

3
�

n3+ 8n− 16
�

+3α2(−2n2+3n−2)+3α(n2−3n+4)+3(n−2),

with equality holding if and only if V 1 and V 2 are in-trees with n1 = n− 1
and n2 = 1.

(ii) Similarly as in the proof of (i), if r = 2, n = n1 + n2. Let n2 = x and
n1 = n− x , where 1 ≤ n2 ≤

�

n
2

�

. Using Theorem 3.10, we only need to
consider

−
α3

4

�

x4 + (n− x)4
�

+
�

α3
�

n−
1

2

�

+ 3α(1−α)2 −
3

2
(1−α)2

�

�

x3 + (n− x)3
�

−
�

α3

�

3n2

2
−

3n

2
+

1

4

�

+ 6α(1−α)2n−
3

2
(1−α)2(n+ 1)

�

�

x2 + (n− x)2
�

.

Let g(x) = a′
�

x4+ (n− x)4
�

+ b′
�

x3+ (n− x)3
�

+ c′
�

x2+ (n− x)2
�

,

where a′ =−α
3

4
, b′ = α3�n− 1

2

�

+3α(1−α)2− 3
2
(1−α)2 and c =−

�

α3�3n2

2
−
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3n
2
+ 1

4

�

+ 6α(1−α)2n− 3
2
(1−α)2(n+ 1)

�

. Then

g(x) = 2a′x4− 4a′nx3+ (6a′n2+ 3b′n+ 2c′)x2

− (4a′n3+ 3b′n2+ 2c′n)x + (a′n4+ b′n3+ c′n2).

Next, we prove that g(x) is an increasing function when 1≤ x ≤ n
2
.

When 1≤ x ≤ n
2
, since

g ′(x) = 8a′x3− 12a′nx2+ 2(6a′n2+ 3b′n+ 2c′)x − (4a′n3+ 3b′n2+ 2c′n),

g ′′(x) = 24a′x2− 24a′nx + 2(6a′n2+ 3b′n+ 2c′)

and
g ′′′(x) = 48a′x − 24a′n≥ 0,

g ′′(x) is an increasing function and

g ′′(x)max = g ′′(
n

2
) = 6a′n2+ 6b′n+ 4c′

=−
�

3α3
�n

2
+ 1
�

− 9α2+ 1
�

n−α(α2− 6α+ 12)− (2n− 6).

If n= 3, g ′′( n
2
) =−47

2
α3+ 33α2− 12α− 3< 0 when α ∈ [0, 1). If n= 4,

g ′′( n
2
) =−37α3+ 42α2− 12α− 6< 0 when α ∈ [0,1). Next, we show that

also in case n≥ 5, g ′′( n
2
)< 0 when α ∈ [0,1).

For this, we use the help function h(x) = 3
�

n
2
+ 1
�

x3 − 9x2 + 1. Then
h′(x) = 9

�

n
2
+ 1
�

x2 − 18x = 9
2

x((n+ 2)x − 4). If h′(x) = 0, then x = 0
or x = 4

n+2
. h(x) is decreasing on [0, 4

n+2
] and increasing on [ 4

n+2
, 1). So

h(x)min = h( 4
n+2
) = n2+4n−44

(n+2)2 > 0 if n≥ 5.

Hence, if n≥ 5, g ′′( n
2
)≤ 0 since h(x)> 0, α2−6α+12> 0 and 2n−6> 0

when α ∈ [0,1). So g ′(x) is a decreasing function and

g ′(x)min = g ′(
n

2
) = 0.

Hence, g ′(x) ≥ 0 and g(x) is an increasing function when 1 ≤ x ≤ n
2
, and

consequently g(x)≤ g( n
2
).
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Concluding, SM3
α(G) is maximal when n1 = n2 =

n
2

if n is even, and
n1 =

n+1
2

, n2 =
n−1

2
if n is odd. If n is even,

g(
n

2
) =

1

32

�

−α3(17n4+ 52n3+ 4n2) + 12α2(13n3+ 2n2)

− 48α(2n3+ n2) + 12(n3+ 2n2)
�

.

If n is odd,

g(
n

2
) =

1

32

�

−α3(17n4 + 52n3 + 10n2 + 12n+ 5) + 12α2(13n3 + 2n2 + 3n+ 2)

− 48α(2n3 + n2 + 1) + 12(n3 + 2n2 − n+ 2)
�

.

Thus,

SM3
α(G)≤































1
32

�

α3(15n4− 4n3+ 12n2)− 12α2(3n3+ 2n2)

+48αn2+ 12(n3− 2n2)
�

, if n is even,

1
32

�

α3(15n4− 4n3+ 6n2− 12n− 5)

−12α2(3n3+ 2n2− 3n− 2)

+48α(n2− 1) + 12(n3− 2n2− n+ 2)
�

, if n is odd,

with equality holding if and only if V 1 and V 2 are transitive tournaments with
n1 =

 

n
2

£

and n2 =
�

n
2

�

.

3.4 Conclusion

In this chapter, we compared the second and third spectral moments of L(G)
and Aα(G), and extended the results we obtained in Chapter 2 for L(G)
to Aα(G). There are similarities and differences. Some results for the Aα
spectral moments could be obtained directly from similar results for the
Laplacian spectral moments. But several results required new proofs, and not
all questions have been answered. We like to finish this chapter by recalling
some of the open problems for future research.

With respect to the lower bounds and minimal digraphs for the Aα energy,
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Theorem 3.6 shows that the results for the Aα energy are the same as for
the Laplacian energy when α ∈ [1

2
, 1). However, when α ∈ [0, 1

2
) they might

be different, and for the interval α ∈ [0, 1
4
] we illustrated the difference

by concrete examples. We do not know whether such examples exist for
α ∈ (2

p
2−1
7

, 1
2
), and leave this as an open problem. We also did not obtain

a full characterization of the minimal digraphs for the Aα energy among all
digraphs with a fixed dichromatic number. So we leave this as another open
problem.
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Chapter 4

Bounds for the Aα spectral
radius of digraphs

In this chapter, we characterize the digraph which has the maximal Aα spectral
radius within classes of digraphs with a fixed dichromatic number by using
a new method: the equitable quotient matrix. This provides a new proof of
the results by Liu et al. [89]. Moreover, we obtain the digraph which has the
minimal Aα spectral radius of the join of in-trees with a fixed dichromatic
number.

4.1 Introduction

Recall that the Aα-matrix of a digraph G as

Aα(G) = αD+(G) + (1−α)A(G),

where α ∈ [0,1). In 2019, Liu et al. [89] characterized the digraph which
has the maximal Aα spectral radius with given dichromatic number. As we
know, the Aα-matrix is a natural common extension of the adjacency matrix
A(G) = A0(G) and the signless Laplacian matrix Q(G) = 2A 1

2
(G). In 2011, Lin

and Shu [78] characterized the digraph which has the maximal spectral radius
with given dichromatic number. In 2017, Xi and Wang [132], Li and You [74]

75
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76 Chapter 4. Bounds for the Aα spectral radius of digraphs

characterized the extremal digraph which has the maximum signless Laplacian
spectral radius of digraphs with given dichromatic number, independently. The
maximal digraphs of the above results is the same, and that maximal digraph
is the join digraph G =

∨r
i=1 V i which each V i is a transitive tournament with

|ni − n j| ≤ 1. Moreover, the proof methods in [74, 78, 89, 132] are similar.
They both use Perron-Frobenius Theorem.

Recently, Kim et al. [62] proved a tight upper bound for the spectral radius
of digraphs in terms of the number of vertices and the dichromatic number.
They provided a new proof of the results by Lin and Shu [78] and the new
method is equitable quotient matrix. From this, we will wonder whether
Aα-matrix can also apply the equitable quotient matrix. Actually, it is true.
And we characterize the digraph which has the maximal Aα spectral radius
within classes of digraphs in Gn,r by using equitable quotient matrix, which
provides a new proof of the results by Liu et al. [89].

All of these are depictions of the upper bound for spectral radius of
digraphs in Gn,r . On the lower bound, in 2007, Feng et al. [36] proved that,
among all graphs with given chromatic numbers, the Turán graph has the
maximal spectral radius; and the path Pn if r = 2, the cycle Cn if r = 3 and n is
odd, C1

n−1 if r = 3 and n is even, K(`)r if r ≥ 4 has the minimal spectral radius,
where C1

n−1 is obtained from the cycle Cn−1 by adding one pendent vertex
and K(`)r is obtained by joining a path of order ` to the complete graph Kr .
In 2010, Mohar [96] gave a lower bound on the spectral radius for digraphs
with given dichromatic number. He obtained

χ(G)≤ ρA(G) + 1,

if G is strongly connected, then the equality holds if and only if G is one of
the digraphs listed in cases (i)-(iii) in Lemma 1.2 for r = χ(G). In 2013, Lin
and Shu [79] determined the extremal digraph with the minimal distance
spectral radius with given dichromatic number. This minimal digraph is also
the join digraph G =

∨r
i=1 V i which each V i is a transitive tournament with

|ni − n j| ≤ 1.

In Chapters 2 and 3, the digraphs attaining the maximal Laplacian energy
and maximal Aα energy in Gn,r are the join of transitive tournaments with
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|ni−n j| ≤ 1. On the other hand, the digraphs attaining the minimal Laplacian
energy and minimal Aα energy in Gn,r are different from the maximal ones.
But this minimal digraphs are related to in-trees and the digraphs listed in
cases (i)-(iii) in Lemma 1.2. Since we have found the digraph which has the
maximal Aα spectral radius among all digraphs in Gn,r , we also want to find
the digraph which has the minimal Aα spectral radius. But we can not find
this extremal digraphs. However, in Chapters 2 and 3, we also determine
the minimal join digraphs in Gn,r for the second and third Laplacian spectral
moments and Aα spectral moments. And the minimal join digraphs are the
join of in-trees. This is another motivation for us to study.

Recall that the in-tree is a directed tree for which the outdegree of each
vertex is at most one. And an in-tree has exactly one vertex with outdegree
0, and such a vertex is called the root of the in-tree. This is also a class of
digraphs. Especially, the directed path and the in-star are also in-trees. Hence
we want to find the digraph which has the minimal Aα spectral radius of the
join of in-trees in Gn,r .

First, we give a small result about Aα eigenvalues of acyclic digraphs.

Theorem 4.1. Let G be an acyclic digraph of order n. Then λαi = αd+i for all
i = 1, 2, . . . , n.

Proof. From Lemma 1.8, any acyclic digraph admits a topological ordering,
i.e., an ordering of its vertices {v1, v2, . . . , vn} such that for every arc (vi , v j),
we have i < j. So the Aα-matrix of an acyclic digraph is an upper triangular
matrix. Obviously, |x In − Aα(G)| = Πn

i=1(x − αd+i ). Then λαi = αd+i for all
i = 1, 2, . . . , n.

Since the Aα eigenvalue of an acyclic digraph is λαi = αd+i , we get
ρα(G) = α∆+(G) in Gn,1. Therefore we only consider the cases when r ≥ 2.

In this chapter, the organization is as follows. In Section 4.2, we char-
acterize the digraph which has the maximal Aα spectral radius among all
digraphs in Gn,r by using the equitable quotient matrix. Note that Liu et
al. [89] obtained this results by using the Perron-Frobenius Theorem. In
Section 4.3, we obtain the digraph which has the minimal Aα spectral radius
of the join of in-trees in Gn,r .



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

78 Chapter 4. Bounds for the Aα spectral radius of digraphs

4.2 The maximal Aα spectral radius of digraphs

In this section, we will consider the maximal Aα spectral radius of digraphs in
Gn,r . Using the Perron-Frobenius Theorem, this result has been proved by Liu
et al. [89], but we give a new proof by using the equitable quotient matrix.
First, to finding the maximal Aα spectral radius of join digraphs

∨r
i=1 V i in

Gn,r , we also need the following lemma.

Lemma 4.2 (Liu, Wu, Chen and Liu [89]). Let G be a strongly connected
digraph with the Aα spectral radius ρα(G) and maximal outdegree ∆+(G). If G′

is a proper subdigraph of G, then ρα(G)> ρα(G′), especially, ρα(G)> α∆+(G).

Theorem 4.3. Let G =
∨r

i=1 V i . Then ρα(G) is maximal if and only if each V i

is a transitive tournament with |ni − n j| ≤ 1.

Proof. By Lemma 4.2, we know that adding the arcs will increase the Aα
spectral radius. So the transitive tournament has the maximum Aα spectral
radius in acyclic digraphs. That is, the join digraph G =

∨r
i=1 V i has the

maximal Aα spectral radius in Gn,r if and only if each V i is a transitive
tournament. Hence we only need to consider the size of each ni .

Let GT =
∨r

i=1 V i which each V i is a transitive tournament with ni ver-
tices and n1 ≥ n2 ≥ · · · ≥ nr . By Lemma 1.8, we obtain a vertex ordering
{v i

1, v i
2, . . . , v i

ni
} of each transitive tournament V i such that (v i

s , v i
t) ∈A (G

T ),
for all s < t and i = 1, 2, . . . , r. Then d+

GT (v i
j) = n− j. For each j = 1, 2, . . . , n1,

let A j = {v i
j |i = 1,2, . . . , r} and |A j| = a j. Then the vertices in A j have the

same outdegree n− j. Let B = B(GT ) be the quotient matrix of Aα(GT ), where
B corresponds to the vertex partition A1, A2, . . . , An1

. Then the quotient matrix
B is equitable and

Bi j =











α(n− j) + (1−α)(a j − 1), if i = j,

(1−α)a j , if i < j,

(1−α)(a j − 1), if i > j.
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The characteristic polynomial of B is

|x In1
− B|=

n1
∏

i=1

(x −α(n− i))

−
n1
∑

j=1



(1−α)(a j − 1)
j−1
∏

i=1

(x −α(n− i))
n1
∏

i= j+1

((1−α) + x −α(n− i))



 .

Note: if j = n1, let
∏n1

i= j+1((1−α) + x −α(n− i)) = 1. (See Appendix 4.4
for detailed calculation.)
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Figure 4.1: The digraphs GT and GT ′.

Let

f (x) = f (x; n1, . . . , nr) =
n1
∏

i=1

(x −α(n− i))

−
n1
∑

j=1



(1−α)(a j − 1)
j−1
∏

i=1

(x −α(n− i))
n1
∏

i= j+1

((1−α) + x −α(n− i))



 .
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By Lemma 1.5, ρα(GT ) is an eigenvalue (multiplicity one) of Aα(GT ) and
there is a corresponding eigenvector whose coordinates are all positive. And
from Lemma 1.7, ρα = ρα(GT ) is the root of f (x) with the largest modulus.
From Lemma 4.2, we know ρα > α∆+(GT ) = α(n− 1). For convenience, let

X n1
j (x) =

j−1
∏

i=1

(x −α(n− i))
n1
∏

i= j+1

((1−α) + x −α(n− i)).

Let GT ∗ =
∨r

i=1 V i which each V i is a transitive tournament with |ni −
n j| ≤ 1. Next we prove ρα(GT )≤ ρα(GT ∗). We assume that GT 6= GT ∗, then
we have n1 ≥ nr + 2. Let p be the largest index such that n1 = · · · = np >

np+1 ≥ · · · ≥ nr . See Figure 4.1, we do the following operation:

GT ′ = GT + {(vp
np

, vp
i )|i = 1,2, . . . , np − 1} − {(vp

np
, vr

j )| j = 1,2, . . . , nr}.

Let ρ′α = ρα(G
T ′) be the root of f̃ (x) with the largest modulus, where

f̃ (x) = f (x; n1, . . . , np − 1, . . . , nr + 1). Next, we will prove f̃ (ρα)< 0 by the
following two cases.

Case 1. If p ≥ 2, that is n1 = n2 = · · ·= np. Let

f̃ (x) = f (x; n1, . . . , np − 1, . . . , nr + 1)

=
n1
∏

i=1

(x −α(n− i))−
n1
∑

j=1

�

(1−α)(a′j − 1)X n1
j (x)

�

,

where

a′j =











a j + 1, if j = nr + 1,

a j − 1, if j = n1,

a j , otherwise.

Then

f̃ (ρα) =
n1
∏

i=1

(ρα−α(n− i))−
n1−1
∑

j=1, j 6=nr+1

�

(1−α)(a j − 1)X n1
j (ρα)

�

− (1−α)(anr+1+ 1− 1)X n1
nr+1(ρα)− (1−α)(an1

− 1− 1)X n1
n1
(ρα)
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=
n1
∏

i=1

(ρα−α(n− i))−
n1
∑

j=1

�

(1−α)(a j − 1)X n1
j (ρα)

�

− (1−α)X n1
nr+1(ρα) + (1−α)X

n1
n1
(ρα)

= f (ρα)− (1−α)
�

X n1
nr+1(ρα)− X n1

n1
(ρα)

�

.

Next,

X n1
nr+1(ρα)− X n1

n1
(ρα)

=
nr
∏

i=1

(ρα −α(n− i))
n1
∏

i=nr+2

((1−α) +ρα −α(n− i))

−
n1−1
∏

i=1

(ρα −α(n− i))
n1
∏

i=n1+1

((1−α) +ρα −α(n− i))

=
nr
∏

i=1

(ρα −α(n− i))





n1
∏

i=nr+2

((1−α) +ρα −α(n− i))−
n1−1
∏

i=nr+1

(ρα −α(n− i))



 .

Since n1 ≥ nr + 2, we have

ρα−α(n−i)> α∆+(GT )−α(n−i) = α(n−1)−α(n−i) = α(i−1)≥ 0 (i ≥ 1),

(1−α) +ρα−α(n− i)> (1−α) +α(i− 1) = α(i− 2) + 1≥ 1 (i ≥ nr + 2),

and

((1−α)+ρα−α(n− n1))− (ρα−α(n− (nr +1))) = α(n1− nr −2)+1≥ 1.

Obviously,
(1−α) +ρα−α(n− i)> ρα−α(n− i).

Then

n1
∏

i=nr+2

((1−α) +ρα−α(n− i))−
n1−1
∏

i=nr+1

(ρα−α(n− i))

=
n1−1
∏

i=nr+2

((1−α) +ρα−α(n− i))−
n1−1
∏

i=nr+2

(ρα−α(n− i))
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+ ((1−α) +ρα−α(n− n1))− (ρα−α(n− (nr + 1)))

> 0.

Hence X n1
nr+1(ρα)− X n1

n1
(ρα)> 0. Since f (ρα) = 0, we have f̃ (ρα)< 0.

Case 2. If p = 1, that is n1 > n2. Let

f̃ (x) = f (x; n1− 1, . . . , nr + 1)

=
n1−1
∏

i=1

(x −α(n− i))−
n1−1
∑

j=1

�

(1−α)(a′j − 1)X n1−1
j (x)

�

,

where

a′j =







a j + 1, if j = nr + 1,

a j , otherwise.

Then

f̃ (ρα) =
n1−1
∏

i=1

(ρα−α(n− i))−
n1−1
∑

j=1, j 6=nr+1

�

(1−α)(a j − 1)X n1−1
j (ρα)

�

− (1−α)(anr+1+ 1− 1)X n1−1
nr+1 (ρα)

=
n1−1
∏

i=1

(ρα−α(n− i))−
n1−1
∑

j=1

�

(1−α)(a j − 1)X n1−1
j (ρα)

�

− (1−α)X n1−1
nr+1 (ρα).

Since

f (ρα) =
n1
∏

i=1

(ρα−α(n− i))−
n1
∑

j=1

�

(1−α)(a j − 1)X n1
j (ρα)

�

,

and
X n1

j (ρα) = ((1−α) +ρα−α(n− n1))X
n1−1
j (ρα),
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we have

f̃ (ρα)
�

(1−α) +ρα−α(n− n1)
�

= f (ρα) + (1−α)
n1−1
∏

i=1

(ρα−α(n− i))

+ (1−α)(an1
− 1)X n1

n1
(ρα)− (1−α)X

n1
nr+1(ρα)

= f (ρα) + (1−α)
n1−1
∏

i=1

(ρα−α(n− i))

− (1−α)
nr
∏

i=1

(ρα−α(n− i))
n1
∏

i=nr+2

((1−α) +ρα−α(n− i))

= f (ρα) + (1−α)
nr
∏

i=1

(ρα−α(n− i))







n1−1
∏

i=nr+1

(ρα−α(n− i))−
n1
∏

i=nr+2

((1−α) +ρα−α(n− i))






.

Since n1 ≥ nr + 2, we have

(ρα−α(n− nr − 1))− ((1−α) +ρα−α(n− n1)) = α(nr + 2− n1)− 1< 0.

Then we have

n1−1
∏

i=nr+1

(ρα−α(n− i))−
n1
∏

i=nr+2

((1−α) +ρα−α(n− i))

=
n1−1
∏

i=nr+2

(ρα−α(n− i))−
n1−1
∏

i=nr+2

((1−α) +ρα−α(n− i))

+ (ρα−α(n− nr − 1))− ((1−α) +ρα−α(n− n1))

< 0.

So f̃ (ρα)< 0.

As both f (x) and f̃ (x) have the positive leading coefficients, f̃ (ρα)< 0
implies that ρα < ρ

′
α. We perform the above operation as many times as
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84 Chapter 4. Bounds for the Aα spectral radius of digraphs

possible until |n1− nr | ≤ 1, which means that ρα(G) is maximal if and only
if each V i is a transitive tournament with |ni − n j| ≤ 1. This completes the
proof.

The next result characterizes the digraph which attains the maximal Aα
spectral radius among all digraphs in Gn,r . It is an easy consequence of
Theorem 4.3.

Theorem 4.4. Let G be a digraph in Gn,r . Then ρα(G) is maximal if and only
if G =

∨r
i=1 V i and each V i is a transitive tournament with |ni − n j| ≤ 1.

4.3 The minimal Aα spectral radius of the join of in-
trees

In this section, we will consider the minimal Aα spectral radius of the join of
in-trees in Gn,r .

Theorem 4.5. Let G =
∨r

i=1 V i be a join digraph in Gn,r , which each V i is an
in-tree with ni vertices. Then ρα(G) is minimal if and only if each V i is an
in-star with ni vertices.

Proof. Let G? =
∨r

i=1 V i? be a join digraph in Gn,r , which each V i? is an in-
star with ni vertices. Let V (V i?) = {v i

1, v i
2, . . . , v i

ni
} such that (v i

j , v i
ni
) ∈A (G?),

for all i = 1,2, . . . , r and j = 1,2, . . . , ni − 1. Then d+G?(v
i
j) = n− ni + 1 and

d+G?(v
i
ni
) = n− ni . Suppose that

x= (x1
1 , x1

2 , . . . , x1
n1

, x2
1 , x2

2 , . . . , x2
n2

, . . . , x r
1, x r

2, . . . , x r
nr
)T

is a Perron vector of G? corresponding to the Aα spectral radius ρ?α = ρα(G
?),

where x i
j is the characteristic component corresponding to v i

j for each 1≤ i ≤
r and 1≤ j ≤ ni .

Since Aα(G?)x= ρ?αx, we have







α(n− ni + 1)x i
j + (1−α)x

i
ni
+ (1−α)

∑r
s=1,s 6=i

∑ns
t=1 x s

t = ρ
?
αx i

j ,

α(n− ni)x i
ni
+ (1−α)

∑r
s=1,s 6=i

∑ns
t=1 x s

t = ρ
?
αx i

ni
,



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 95PDF page: 95PDF page: 95PDF page: 95
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where i = 1,2, . . . , r and j = 1, 2, . . . , ni − 1. Then we have

((1−α) +ρ?α−α(n− ni))x
i
ni
= (ρ?α−α(n− ni + 1))x i

j .

Obviously, x i
ni
< x i

1 = x i
2 = · · ·= x i

ni−1 for all i = 1, 2, . . . , r.

Next we prove ρα(G) ≥ ρα(G?). Suppose that G 6= G?, we can get the
digraph G by changing many arcs in G?. We first consider the transformation
of one arc. We do the transformation of an arbitrary arc (v i

j , v i
ni
) ∈ A (G?)

for all i = 1,2, . . . , r and j = 1,2, . . . , ni − 1. Without loss of generality, we
consider the arc (v1

j , v1
n1
). Let

G = G?− (v1
j , v1

n1
) + (v1

s , v1
t ).

By the structural property of directed trees, the arc (v1
s , v1

t ) only has three
cases: (v1

s , v1
t ) = (v

1
j , v1

t ) or (v1
s , v1

t ) = (v
1
n1

, v1
j ) or (v1

s , v1
t ) = (v

1
s , v1

j ), where
s, t = 1, 2, . . . , n1−1. Since the outdegree sequence of the in-tree is (1,1,. . . ,1,0),
the case (v1

s , v1
t ) = (v

1
s , v1

j ) is impossible. So we only discuss the two cases:
(v1

j , v1
n1
)→ (v1

j , v1
t ) or (v1

j , v1
n1
)→ (v1

n1
, v1

j ).

Case 1. If (v1
j , v1

n1
)→ (v1

j , v1
t ). Since x1

n1
< x1

j = x1
t , we obtain

(Aα(G)− Aα(G
?))x= (0, . . . , 0, (1−α)(x1

t − x1
n1
), 0, . . . , 0)T > 0.

That is Aα(G)x> Aα(G?)x= ρα(G?)x. By Lemma 1.6, ρα(G)> ρα(G?).

Case 2. If (v1
j , v1

n1
)→ (v1

n1
, v1

j ). We can find a digraph G′ such that G′ ∼= G.
Without loss of generality, let v1

j = v1
1 . Then we have d+G (v

1
1 ) = n− n1 and

d+G?(v
1
n1
) = n− n1. Let G′ be a digraph which switch the index of v1

n1
and v1

1

in G. Then

G′ = G− (v1
n1

, v1
1 )− {(v

1
i , v1

n1
)|i = 2, 3, . . . , n1− 1}

+ (v1
1 , v1

n1
) + {(v1

i , v1
1 )|i = 2, 3, . . . , n1− 1}.

Obviously, G′ ∼= G and

G′ = G?− {(v1
i , v1

n1
)|i = 2,3, . . . , n1− 1}+ {(v1

i , v1
1 )|i = 2, 3, . . . , n1− 1}.
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Then we obtain

(Aα(G
′)−Aα(G

?))x= (0, (1−α)(x1
1−x1

n1
), . . . , (1−α)(x1

1−x1
n1
), 0, . . . , 0)T > 0.

That is Aα(G′)x> Aα(G?)x= ρα(G?)x. By Lemma 1.6, ρα(G′)> ρα(G?). So
we have ρα(G) = ρα(G′)> ρα(G?).

For the transformation of many arcs, similar to Case 2, we can find a
digraph G such that d+G (v

i
ni
) = n− ni and d+G (v

i
j) = n− ni + 1 for all i =

1, 2, . . . , r and j = 1, 2, . . . , ni−1. Then the components of (Aα(G)−Aα(G?))x
are 0 or (1 − α)(x i

j − x i
ni
). So (Aα(G) − Aα(G?))x > 0 always holds and

ρα(G)> ρα(G?).

To sum up the above, we have ρα(G) ≥ ρα(G?) with equality holding if
and only if G ∼= G?.
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Figure 4.2: The digraphs G3 and G4.

To illustrate the transformation for Theorem 4.5 better, we give the fol-
lowing example.

Let G3 = V 1 ∨ V 2 and G4 = V 1? ∨ V 2? be two digraphs shown in Figure
4.2. Then we can get the digraph G3 by changing many arcs in the digraph
G4: (v1

1 , v1
6 ) → (v

1
1 , v1

2 ), (v
1
3 , v1

6 ) → (v
1
3 , v1

2 ), (v
1
4 , v1

6 ) → (v
1
4 , v1

3 ), (v
1
5 , v1

6 ) →
(v1

5 , v1
3 ), (v

2
1 , v2

4 )→ (v
2
1 , v2

2 ), (v
2
2 , v2

4 )→ (v
2
2 , v2

3 ). From Theorem 4.5, we have
(Aα(G3)− Aα(G4))x = {(1− α)(x1

2 − x1
6), 0, (1− α)(x1

2 − x1
6), (1− α)(x

1
3 −
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x1
6), (1 − α)(x

1
3 − x1

6), 0, (1 − α)(x2
2 − x2

4), (1 − α)(x
2
3 − x2

4), 0, 0} > 0. So
ρα(G3)> ρα(G4).

Unfortunately, we can not get a concrete digraph which has the minimal
Aα spectral radius of the join of in-trees in Gn,r , liking Theorem 4.3. We
also can not get this minimal digraph in Gn,2. But we obtain the minimal Aα
spectral radius of the join of in-trees in Gn,2 when α = 0 or α = 1

2
. Notice, the

A0 spectral radius is adjacency spectral radius and the A 1
2

spectral radius is
the half of signless Laplacian spectral radius.

Theorem 4.6. Let G = V 1 ∨ V 2 be a join digraph in Gn,2 which each V i is an
in-tree with ni vertices. Then ρ0(G) is minimal if and only if V 1 and V 2 are
in-stars with n1 = n− 1 and n2 = 1.

Proof. Let G? = V 1? ∨ V 2? which V 1? and V 2? are in-stars and n1 ≥ n2. By
Theorem 4.5, we know that the digraph which has the minimal Aα spectral
radius of the join of in-trees in Gn,2 if and only if each V i is an in-star with ni

vertices. So we only need to consider the size of ni of G?. Obviously,
 

n
2

£

≤
n1 ≤ n− 1, 1 ≤ n2 ≤

�

n
2

�

. And d+G?(v
i
j) = n− ni + 1 and d+G?(v

i
ni
) = n− ni,

where i = 1,2 and j = 1,2, . . . , ni − 1. Let A11 = {v1
j | j = 1,2, . . . , n1 − 1},

A12 = {v1
n1
}, A21 = {v2

j | j = 1,2, . . . , n2− 1} and A22 = {v2
n2
}. Let BA = BA(G?)

be the quotient matrix of A(G?), where BA corresponds to the vertex partition
A11, A12, A21, A22. Then the quotient matrix BA is equitable. Next we consider
the cases when n1 > n2 > 1, n1 = n2 and n1 = n− 1, n2 = 1.

Case 1. If n1 > n2 > 1, then the equitable quotient matrix BA as follows:

BA =













0 1 n2− 1 1
0 0 n2− 1 1

n1− 1 1 0 1
n1− 1 1 0 0













.

The characteristic polynomial of BA is

|x I4− BA|= x4− n1n2 x2+ (n− 2n1n2)x + (n− n1n2− 1).
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Let

fA(x) = fA(x; n1, n2) = x4− n1n2 x2+ (n− 2n1n2)x + (n− n1n2− 1).

By using the Perron-Frobenius Theorem, ρA(G?) is an eigenvalue (multiplicity
one) of A(G?) and there is a corresponding eigenvector whose coordinates are
all positive. And from Lemma 1.7, ρ?A = ρA(G?) is the root of fA(x) with the
largest modulus.

Next we prove ρA(G?) is minimal if and only if V 1? and V 2? are in-stars
with n1 = n− 1 and n2 = 1. We move one of the vertices in V 1? (except for
the vertex v1

n1
) to V 2?. Without loss of generality, let that vertex be v1

1 . That is

G′ =G?− (v1
1 , v1

n1
)− {(v1

1 , v2
s )|s = 1,2, . . . , n2} − {(v2

s , v1
1 )|s = 1, 2, . . . , n2}

+ (v1
1 , v2

n2
) + {(v1

t , v1
1 )|t = 2, . . . , n1}+ {(v1

1 , v1
t )|t = 2, . . . , n1}.

Let ρ′A = ρA(G′) be the root of f̃A(x) with the largest modulus, where f̃A(x) =
fA(x; n1− 1, n2+ 1) = x4− (n1− 1)(n2+ 1)x2+ (n− 2(n1− 1)(n2+ 1))x +
(n− (n1− 1)(n2+ 1)− 1). Then

f̃A(ρ
?
A) = fA(ρ

?
A) + (n2+ 1− n1)

�

ρ?A+ 1
�2

.

We know fA(ρ?A) = 0 and n1 > n2 > 1. If n2+ 1− n1 = 0, then n > 2 is odd
and n1 =

n+1
2

, n2 =
n−1

2
. That is G′ = G?. If n2 + 1− n1 < 0, then f̃A(ρ?A)< 0.

As both fA(x) and f̃A(x) have the positive leading coefficients, f̃A(ρ?A)< 0
implies that ρ?A < ρ

′
A. So the A0 spectral radius with n1 and n2 is smaller than

the A0 spectral radius with n1 − 1 and n2+ 1. That is when n1 = n− 2 and
n2 = 2, the A0 spectral radius is minimal.

Case 2. If n1 = n2 > 1, then n > 2 is even and n1 = n2 =
n
2
. By Case 1, we

know the A0 spectral radius with n1 = n2 =
n
2

is bigger than the A0 spectral
radius with n1 =

n
2
+ 1 and n2 =

n
2
− 1. So when n1 = n− 2 and n2 = 2, the

A0 spectral radius is minimal.
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Case 3. If n1 = n− 1 and n2 = 1, then the equitable quotient matrix B′A is

B′A =









0 1 1
0 0 1

n− 2 1 0









.

From Lemma 1.3, we have ρ(B′A) = ρ(B
′′
A )< ρ(BA), where BA with n1 = n−1,

n2 = 1 and

B′′A =













0 1 0 1
0 0 0 1
0 0 0 0

n− 2 1 0 0













.

By Case 1, the A0 spectral radius with n1 = n− 2 and n2 = 2 is bigger than
the A0 spectral radius with n1 = n− 1 and n2 = 1. So when n1 = n− 1 and
n2 = 1, the A0 spectral radius is minimal.

Hence, ρ0(G) is minimal if and only if V 1 and V 2 are in-stars with n1 =
n− 1 and n2 = 1.

Theorem 4.7. Let G = V 1 ∨ V 2 be a join digraph in Gn,2 which each V i is an
in-tree with ni vertices. Then ρ 1

2
(G) is minimal if and only if V 1 and V 2 are

in-stars with n1 = n− 1 and n2 = 1.

Proof. Similar to the proof of Theorem 4.6, we only need to consider the
size of ni of G?. Let BQ = BQ(G?) be the equitable quotient matrix of Q(G?),
where BQ corresponds to the vertex partition A11, A12, A21, A22. We also omit
the category discussion about n1 and n2.

If n1 > n2 > 1, then the equitable quotient matrix BQ as follows:

BQ =













n2+ 1 1 n2− 1 1
0 n2 n2− 1 1

n1− 1 1 n1+ 1 1
n1− 1 1 0 n1













.
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The characteristic polynomial of BQ is

|x I4− BQ|= x4− (2+ 2n)x3+ (1+ 3n+ n2+ n1n2)x
2

+ (n− n2− 4n1n2− n1n2n)x

+ (−4+ 2n− 4n1n2+ 2n1n2n).

Let

fQ(x) = fQ(x; n1, n2) = x4− (2+ 2n)x3+ (1+ 3n+ n2+ n1n2)x
2

+ (n− n2− 4n1n2− n1n2n)x + (−4+ 2n− 4n1n2+ 2n1n2n).

By the Perron-Frobenius Theorem, ρQ(G?) is an eigenvalue (multiplicity one)
of Q(G?) and there is a corresponding eigenvector whose coordinates are all
positive. And from Lemma 1.7, ρ?Q = ρQ(G?) is the root of fQ(x) with the
largest modulus.

Next we prove ρQ(G?) is minimal if and only if V 1? and V 2? are in-stars
with n1 = n− 1 and n2 = 1. We move one of the vertices in V 1? (except for
the vertex v1

n1
) to V 2?. The operation is same to the Theorem 4.6, so we omit

it. Let ρ′Q = ρQ(G′) be the root of f̃Q(x) with the largest modulus, where

f̃Q(x) = fQ(x; n1− 1, n2+ 1)

= x4− (2+ 2n)x3+ (1+ 3n+ n2+ (n1− 1)(n2+ 1))x2

+ (n− n2− 4(n1− 1)(n2+ 1)− (n1− 1)(n2+ 1)n)x

+ (−4+ 2n− 4(n1− 1)(n2+ 1) + 2(n1− 1)(n2+ 1)n).

Then

f̃Q(ρ
?
Q) = fQ(ρ

?
Q) + (n1− n2− 1)

�

(ρ?Q)
2− (4+ n)ρ?Q + 2(n− 2)

�

.

Since n1 > n2 > 1 and fQ(ρ?Q) = 0, to prove f̃Q(ρ?Q)< 0 implies that (ρ?Q)
2−

(4+ n)ρ?Q + 2(n− 2)< 0. That is

4+ n−
p

32+ n2

2
< ρ?Q <

4+ n+
p

32+ n2

2
.
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Since fQ(n + 2) = 4(3n + n2
1 + n2

2) > 0 and fQ(n) = −2(n + 2)(n1 −

1)(n2 − 1) < 0, we get n < ρ?Q < n + 2. Because 4+n−
p

32+n2

2
< n and

n+ 2< 4+n+
p

32+n2

2
are always true, f̃Q(ρ?Q)< 0. Then ρ′Q > ρ

?
Q.

Therefore, similar to the proof of Theorem 4.6, when n1 = n− 1 and
n2 = 1, the A 1

2
spectral radius is minimal. That is, ρ 1

2
(G) is minimal if and

only if V 1 and V 2 are in-stars with n1 = n− 1 and n2 = 1.

From the proof of Theorems 4.6 and 4.7, we know the equitable quotient
matrix Bα of Aα matrix of the join of in-stars in Gn,2 as follows:

Bα =













α(n2+ 1) 1−α (1−α)(n2− 1) 1−α
0 n2α (1−α)(n2− 1) 1−α

(1−α)(n1− 1) 1−α α(n1+ 1) 1−α
(1−α)(n1− 1) 1−α 0 αn1













.

From Tables 4.1 and 4.2, we take two examples about the Aα spectral radius
of the join of in-stars in G7,2 and G10,2 when α= 1

6
, 3

10
, 1

2
, 11

20
, 3

5
, 8

11
, 6

7
.

From Table 4.1, with n1 increases and n2 decreases, the Aα spectral
radius of the join of in-stars is decreasing when α = 1

6
, 3

10
, 1

2
, 11

20
. But when

α = 3
5
, 8

11
, 6

7
, it has no such property. From Table 4.2, with n1 increases and

n2 decreases, the Aα spectral radius of the join of in-stars is decreasing when
α = 1

6
, 3

10
, 1

2
. But when α = 11

20
, 3

5
, 8

11
, 6

7
, it has no such property. So we give

the following problem.

Problem 4.1. Characterize the minimal digraphs for Aα spectral radius of the
join of in-trees with a fixed dichromatic number.

Furthermore, from Theorem 4.5, we only find the digraph which has the
minimal Aα spectral radius of the join of in-trees in Gn,r . But for the join of
any directed trees, whether the same conclusion can be obtained. So we give
the following problem.

Problem 4.2. Characterize the minimal digraphs for Aα spectral radius of the
join of directed trees with a fixed dichromatic number.



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 102PDF page: 102PDF page: 102PDF page: 102

92 Chapter 4. Bounds for the Aα spectral radius of digraphs

Table 4.1: The Aα spectral radius of the join of in-stars in G7,2.

n= n1+ n2 = 7 n1 = 4, n2 = 3 n1 = 5, n2 = 2 n1 = 6, n2 = 1

ρα

α= 1
6

4.0838 3.7847 2.9626

α= 3
10

4.1024 3.8660 3.1616

α= 1
2

4.1475 4.0685 3.6309

α= 11
20

4.1646 4.1463 3.85

α= 3
5

4.1856 4.2420 4.2

α= 8
11

4.2699 4.6040 5.0909

α= 6
7

4.4674 5.1892 6

Table 4.2: The Aα spectral radius of the join of in-stars in G10,2.

n= n1+ n2 = 10
n1 = 5

n2 = 5

n1 = 6

n2 = 4

n1 = 7

n2 = 3

n1 = 8

n2 = 2

n1 = 9

n2 = 1

ρα

α= 1
6

5.7080 5.6181 5.3333 4.7906 3.7203

α= 3
10

5.7152 5.6472 5.4314 5.0168 4.1378

α= 1
2

5.7321 5.7183 5.6715 5.5649 5.0958

α= 11
20

5.7382 5.7454 5.7615 5.7619 5.5

α= 3
5

5.7457 5.7789 5.8704 5.9916 6

α= 8
11

5.7737 5.9142 6.2727 6.7479 7.2727

α= 6
7

5.8307 6.2256 6.9544 7.7523 8.5714
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4.4 Appendix

Let bi = x −α(n− i), ci =−(1−α)(ai − 1), d = bn1
+ cn1

= x −α(n− n1)−
(1−α)(an1

−1), β =−(1−α) and γ =−bn1
+β =−x +α(n− n1)− (1−α),

where i = 1,2, . . . , n1. Let

Qn1
=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

b1 β β · · · β γ

0 b2 β · · · β γ

0 0 b3 · · · β γ

...
...

...
...

...

0 0 0 · · · bn1−1 γ

c1 c2 c3 · · · cn1−1 d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, Pn1−1 =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

β β · · · β γ

b2 β · · · β γ

0 b3 · · · β γ

...
...

...
...

0 0 · · · bn1−1 γ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,

and Qn1−i be the determinant obtained by deleting the pre-i rows and the
pre-i columns of Qn1

, Pn1−1−i be the determinant obtained by deleting the
pre-i rows and the pre-i columns of Pn1−1.

Then

|x In1
− B|=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

b1 + c1 c2 + β c3 + β · · · cn1−1 + β cn1
+ β

c1 b2 + c2 c3 + β · · · cn1−1 + β cn1
+ β

c1 c2 b3 + c3 · · · cn1−1 + β cn1
+ β

...
...

...
...

...

c1 c2 c3 · · · bn1−1 + cn1−1 cn1
+ β

c1 c2 c3 · · · cn1−1 bn1
+ cn1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

b1 β β · · · β γ

0 b2 β · · · β γ

0 0 b3 · · · β γ

...
...

...
...

...

0 0 0 · · · bn1−1 γ

c1 c2 c3 · · · cn1−1 d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= b1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

b2 β · · · β γ

0 b3 · · · β γ

...
...

...
...

0 0 · · · bn1−1 γ

c2 c3 · · · cn1−1 d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+ (−1)n1+1c1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

β β · · · β γ

b2 β · · · β γ

0 b3 · · · β γ

...
...

...
...

0 0 · · · bn1−1 γ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= b1Qn1−1 + (−1)n1+1c1Pn1−1

= b1Qn1−1 + (−1)n1+1c1(β − b2)Pn1−2

= b1Qn1−1 + (−1)n1+1c1

n1−1
∏

i=2

(β − bi)γ

= b1

 

b2Qn1−2 + (−1)n1 c2

n1−1
∏

i=3

(β − bi)γ

!

+ (−1)n1+1c1

n1−1
∏

i=2

(β − bi)γ

=
2
∏

i=1

biQn1−2 + b1(−1)n1 c2

n1−1
∏

i=3

(β − bi)γ+ (−1)n1+1c1

n1−1
∏

i=2

(β − bi)γ

=
2
∏

i=1

bi

 

b3Qn1−3 + (−1)n1−1c3

n1−1
∏

i=4

(β − bi)γ

!

+ b1(−1)n1 c2

n1−1
∏

i=3

(β − bi)γ+ (−1)n1+1c1

n1−1
∏

i=2

(β − bi)γ

=
3
∏

i=1

biQn1−3 +
2
∏

i=1

bi(−1)n1−1c3

n1−1
∏

i=4

(β − bi)γ

+ b1(−1)n1 c2

n1−1
∏

i=3

(β − bi)γ+ (−1)n1+1c1

n1−1
∏

i=2

(β − bi)γ
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=
3
∏

i=1

biQn1−3 +
2
∑

t=0

 

t
∏

i=1

bi(−1)n1+1−t ct+1

n1−1
∏

i=t+2

(β − bi)γ

!

=
n1−1
∏

i=1

bid +
n1−2
∑

t=0

 

(−1)n1+1−t ct+1γ

t
∏

i=1

bi

n1−1
∏

i=t+2

(β − bi)

!

.

Note: if t = 0, let
∏t

i=1 bi = 1; if t = n1− 2, let
∏n1−1

i=t+2(β − bi) = 1.

Hence, we get

|x In1
− B|=

n1
∏

i=1

(x −α(n− i))−
n1
∑

j=1

�

(1−α)(a j − 1)

j−1
∏

i=1

(x −α(n− i))
n1
∏

i= j+1

((1−α) + x −α(n− i))
�

.

Note: if j = n1, let
∏n1

i= j+1((1−α) + x −α(n− i)) = 1.
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Chapter 5

Bounds for the eccentricity
spectral radius of digraphs

In this final chapter, we consider another type of matrix which is known
as the eccentricity matrix or the earlier term DMAX-matrix. Just like in the
previous chapters, we focus on extremal problems related to invariants which
are based on the eigenvalues of this matrix. In particular, we obtain lower
bounds for the eccentricity spectral radius among all join digraphs with a
fixed dichromatic number. Analogous upper bounds seem to be difficult to
obtain. However, we obtain upper bounds for the eccentricity spectral radius
of some more special join digraphs with a fixed dichromatic number.

5.1 Introduction

We refer to Chapter 1 for general terminology and notation, as well as for the
relevant definitions regarding digraphs, their associated matrices and related
eigenvalue invariants, and the dichromatic number. Here we recall some
of the background that motivated our work. More on the background and
related work can be found in Subsection 1.2.3 of Chapter 1.

Scholars in spectral graph theory have often focused their study on the
adjacency matrix, the Laplacian matrix, the signless Laplacian matrix, and the

97
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98 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

distance matrix, among others. Interested readers can find a lot of information
on these matrices in the monographs [13,28,118]. As we mentioned before,
without doubt most of the earlier work has been done on the adjacency matrix,
after its introduction by Poincaré in order to characterize labyrinths [109].
In a sense, the adjacency matrix can be considered as a simplification of the
distance matrix which was introduced by Harary [49]. The adjacency matrix
can be obtained from the distance matrix by only keeping the smallest positive
distances 1 in each row and each column, and setting the other entries to 0.

In this view, the adjacency matrix can be renamed as a DMIN-matrix, and
one may wonder whether there is a useful concept of a DMAX-matrix. Such
considerations have led to the introduction of a novel distance-type graph
matrix, as a kind of opposite of the adjacency matrix. The natural idea is to
maintain only the largest distances of the distance matrix in each row and
each column, and setting the other entries to 0.

In 2013, this concept of the DMAX-matrix was introduced by Randić [113].
This matrix differs from most of the above mentioned matrices in that it is
very sensitive to the pattern of branching in a graph. Randić [113] confined
attention mostly to the DMAX-matrix of trees, notably because in case of trees
it is sufficient to know all the distances between its terminal vertices (leaves).
More details about this matrix and the various Randić-type descriptors can be
found in [31,91,114].

In 2018, the DMAX-matrix was renamed to eccentricity matrix by Wang
et al. [120]. So, the eccentricity matrix is obtained from the distance matrix
by keeping the largest distances in each row and each column, and putting 0
in the remaining entries. For more studies and details about this matrix for
undirected graphs we refer the reader to [51,67,92–94,104,111,121–125].
However, there is still little research on the eccentricity matrix of digraphs. In
2022, Yang and Wang [137] first extended the concept of eccentricity matrix
from graphs to digraphs. Recall that the eccentricity matrix ε(G) of a strongly
connected digraph G is defined as

ε(G)i j =







d(vi , v j), if d(vi , v j) =min{e+(vi), e−(v j)},

0, otherwise.



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

5.1. Introduction 99

With the above motivation, our aim was to extend our results and techniques,
and to continue studying analogous extremal problems associated with the
eccentricity matrix of digraphs.

Following up on the early work of Randić [113], research on the ec-
centricity matrix has often been focused on the eccentricity matrix of trees.
Randić [113] focused on the DMAX-matrix of trees. Wang et al. [120] showed
that the eccentricity matrices of trees are irreducible. Mahato et al. [93]
provided an alternate proof of the result that the eccentricity matrix of a
tree is irreducible. Wei et al. [124] characterized the extremal trees of given
diameter having the minimum ε-spectral radius. He and Lu [51] determined
the trees with the smallest ε-eigenvalues in [−2−

p
13,−2

p
2). Mahato and

Kannan [94] showed that any tree with even diameter, except the star, has
the same number of positive and negative ε-eigenvalues. Besides, they proved
that the ε-eigenvalues of a tree are symmetric with respect to the origin if and
only if the tree has odd diameter.

Since the eccentricity matrix of a digraph only makes sense for strongly
connected digraphs, this matrix is not defined for directed trees. In a recent
paper, Yang and Wang [137] focused on the eccentricity matrix of digraphs
with diameter 2. They considered the irreducibility, lower bounds for the
ε-energy, and lower bounds for the eccentricity spectral radius of digraphs
with diameter 2. One of the main reasons for studying the eccentricity matrix
of digraphs with diameter 2, is that they have a nice property, which we are
going to show next.

Let G be the complement of a digraph G, i.e., with the same vertices as G,
and for which (u, v) is an arc in G if and only if (u, v) is not an arc in G. For a
digraph G with diameter 2, the distance matrix D(G) is D(G) = A(G)+2A(G),
and the eccentricity matrix ε(G) has the following property.

Lemma 5.1 (Yang and Wang [137]). Let G be a strongly connected digraph of
order n with diam(G) = 2.

(i) If ∆+(G) 6= n− 1 and ∆−(G) 6= n− 1, then ε(G) = 2A(G).

(ii) If ∆+(G) = n− 1 or ∆−(G) = n− 1, then ε(G) = 2A(G) + A(G′), where G′

is the subdigraph of G obtained by deleting the arcs (vi , v j) with d+G (vi) 6= n− 1
and d−G (v j) 6= n− 1, for all i, j = 1, 2, . . . , n.
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100 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

As an illustration of the above lemma, we give some examples, as shown
in Figure 5.1.

1
v

2
v

3
v4

v

1
v

2
v

3
v

4
v

6
G

5
G

Figure 5.1: The strongly connected digraphs G5 and G6.

The digraph G5 is a strongly connected digraph with diameter 2 and
∆+(G5) < 3, ∆−(G5) < 3. The digraph G6 is a strongly connected digraph
with diameter 2 and ∆+(G6) = ∆−(G6) = 3. Then

ε(G5) =





















0 0 2 0

0 0 0 2

0 2 0 2

2 0 0 0





















= 2A(G5).

And

ε(G6) =





















0 1 1 1

0 0 2 0

2 1 0 2

2 1 0 0





















= 2A(G6) + A(G′6),

where G′6 is the subdigraph of G6 obtained by deleting the arcs (v2, v1), (v2, v4)
and (v4, v3).

As in the previous chapters, we focus on digraphs with a fixed dichromatic
number. Lin and Shu [78] characterized the digraph which has the maximal
adjacency spectral radius among all digraphs with a given dichromatic number.
And, recalling earlier definitions, the maximal digraph for the spectral radius
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5.1. Introduction 101

among all these digraphs is the join digraph G =
∨r

i=1 V i , in which each V i is
a transitive tournament and |ni−n j| ≤ 1 for all orders of the V i and V j . Liu et
al. [89] characterized the digraph which has the maximal Aα spectral radius
with given dichromatic number, and the maximal digraph is identical to the
above digraph. Recall that in Chapter 4, we obtain this maximal digraph for
the Aα spectral radius by using another method: the equitable quotient matrix.
Moreover, in Chapters 2 and 3, we obtain the digraphs which attain the
maximal Laplacian energy and maximal Aα energy with a fixed dichromatic
number. Also in these cases, the maximal digraphs are still identical to the
above digraph. So, a natural question is whether the maximal digraphs for the
eccentricity spectral radius are the same as in all of the above cases. Actually,
these maximal digraphs turn out to be very different from those in the other
chapters. Based on this, we want to study bounds and extremal digraphs for
the eccentricity spectral radius among all join digraphs in Gn,r .

For the join digraph G =
∨r

i=1 V i in Gn,r , we know that each V i is an
acyclic digraph. If r = 1, then G is an acyclic digraph. But we know the
eccentricity matrix is only defined if G is strongly connected. If r = n, then

G =
↔
K n and ρε(

↔
K n) = ρA(

↔
K n) = n− 1. Therefore, we only consider digraphs

in Gn,r for 2≤ r ≤ n− 1.

Before we are going to consider lower bounds for the eccentricity spectral
radius in the next section, we finish this section by introducing a useful
digraph for our purposes.

Let Gε denote the digraph, the adjacency matrix A(Gε) of which is obtained
from ε(G) by setting the nonzero elements of ε(G) are equal to 1. The
motivation for this is the known fact that adjacency matrices of strongly
connected digraphs are irreducible. Because a lot of properties of spectral
radii involve irreducibility of matrices, when studying the spectral radius of
eccentricity matrices, it is often worthwhile to consider the digraph Gε that
corresponds to the eccentricity matrix.

The remainder of this chapter is organized as follows. In Section 5.2,
we obtain lower bounds for the eccentricity spectral radius among all join
digraphs in Gn,r . In Section 5.3, we derive upper bounds for the eccentricity
spectral radius of some more special join digraphs in Gn,r .
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102 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

5.2 Lower bounds for the eccentricity spectral radius

In this section, we obtain lower bounds for the eccentricity spectral radius
among all join digraphs in Gn,r , and we characterize the corresponding mini-
mal digraphs. First, we present some lemmas that we use in our proofs. The
first lemma is a recent result due to Yang and Wang [137].

Lemma 5.2 (Yang and Wang [137]). Let G be a strongly connected digraph of
order n with diam(G) = 2. If ∆+(G) = n− 1 or ∆−(G) = n− 1, then

ρε(G)> 2.

The second lemma is closely related to the above lemma and easy to
prove.

Lemma 5.3. Let G be a strongly connected digraph of order n ≥ 4 with
diam(G) = 2. If G has ∆+(G) = n− 1 and ∆−(G) = n− 1, and

(i) there are at least two vertices with outdegree n− 1; or

(ii) there are at least two vertices with indegree n− 1; or

(iii) there is one vertex with outdegree n− 1 and indegree n− 1, then

ρε(G)≥ 3.

Proof. Since ∆+(G) = n− 1 and ∆−(G) = n− 1, we assume that u is a vertex
with d+G (u) = n− 1, v is a vertex with d−G (v) = n− 1, and w is a vertex with
d+G (w) 6= n− 1 and d−G (w) 6= n− 1. By the definition of eccentricity matrix,
we have the following:

(a) except for the diagonal element, the elements of the row of ε(G) corre-
sponding to u are all 1, and the column of ε(G) corresponding to u has at
least one entry 2 or all elements are 1;

(b) except for the diagonal element, the elements of the column of ε(G)
corresponding to v are all 1, and the row of ε(G) corresponding to v has at
least one entry 2 or all elements are 1;

(c) the row (and column) of ε(G) corresponding to w has at least one entry 2
and one entry 1.
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5.2. Lower bounds for the eccentricity spectral radius 103

Suppose that there are at least two vertices with outdegree n− 1, without
loss of generality, let d+G (u1) = n− 1 and d+G (u2) = n− 1. Then by (a), the
column sum of ε(G) corresponding to u1 (u2) is at least 3. By (b) and (c), the
column sums of ε(G) corresponding to other vertices are also at least 3. So
all the column sums of ε(G) are at least 3.

Suppose that there are at least two vertices with indegree n− 1, without
loss of generality, let d−G (v1) = n− 1 and d−G (v2) = n− 1. Similarly, by (b),
the row sum of ε(G) corresponding to v1 (v2) is at least 3. By (a) and (c), the
row sums of ε(G) corresponding to other vertices are also at least 3. So all
the row sums of ε(G) are at least 3.

Suppose that there is one vertex with outdegree n− 1 and indegree n− 1,
without loss of generality, let d+G (u) = n− 1 and d−G (u) = n− 1. Then by
(a)-(c), all the row (column) sums of ε(G) are at least 3.

Hence, using Lemma 1.4, if G has ∆+(G) = n−1 and ∆−(G) = n−1, and
satisfies (i) or (ii) or (iii), we obtain that ρε(G)≥ 3.

From Lemma 5.1, for the join digraphs G =
∨r

i=1 V i with ∆+(G) 6= n− 1
and ∆−(G) 6= n− 1, we get

ρε(G) = 2ρA(G).

Hence, in order to get the digraphs which attain the lower bounds for the
eccentricity spectral radius among all join digraphs in Gn,r , it is sufficient to
consider the adjacency spectral radius of the complement of the join digraph.

For this purpose, as illustrated in Figure 5.2, we define a class of digraphs
of order n, denoted by T 2

n,k which satisfies the following:

(1) V (T 2
n,k) has a partition {V (G1),V (G2), . . . ,V (Gk)} such that Gi = K1 or

Gi = 2K1 for any 1≤ i ≤ k;

(2) for any two parts Gi and G j with 1≤ i < j ≤ k, Gi 7→ G j .

The just defined class of digraphs is relevant in the light of the following
result.
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1
G

2
G

1k
G

- k
G

Figure 5.2: A class of digraphs T 2
n,k.

Theorem 5.4. Let G be an acyclic digraph of order n (possibly disconnected).

(i) If ∆+(G) 6= n− 1 and ∆−(G) 6= n− 1, then

ρA(G)≥ 1,

with equality holding if and only if G ∈ T 2
n,k with G1 = Gk = 2K1. Especially,

when n= 3,

ρA(G) = ρA(P3) =
3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108
.

(ii) If ∆+(G) = n− 1 and ∆−(G) = n− 1, then

ρA(G)≥ 0,

with equality holding if and only if G is a transitive tournament.

(iii) If ∆+(G) = n− 1 and ∆−(G) 6= n− 1, then

ρA(G)≥ 1,

with equality holding if and only if G ∈ T 2
n,k with G1 = K1 and Gk = 2K1.

(iv) If ∆+(G) 6= n− 1 and ∆−(G) = n− 1, then

ρA(G)≥ 1,

with equality holding if and only if G ∈ T 2
n,k with G1 = 2K1 and Gk = K1.

Proof. If n = 2, then G is either G = 2K1 or G = P2. And ρA(2K1) = ρA(C2) =
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5.2. Lower bounds for the eccentricity spectral radius 105

1, ρA(P2) = ρA(P2) = 0. Next we consider the lower bounds for ρA(G) when
n≥ 3.

Case 1. ∆+(G) 6= n− 1 and ∆−(G) 6= n− 1.

If n= 3, then G = P3 or G = P2 ∪ K1 or G = 3K1. Obviously,

ρA(G)≥ ρA(P3) =
3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108
≈ 1.32.

If n≥ 4, then d+
G
(v)> 0 and d−

G
(v)> 0 for any v ∈ G. So there must exist

directed cycles in G. Then
ρA(G)≥ 1.

Next we prove that if ρA(G) = 1, then G ∈ T 2
n,k with G1 = Gk = 2K1.

If ρA(G) = 1, then any two directed cycles in G are vertex-disjoint. If G
is a strongly connected digraph, ρA(G) = 1 if and only if G = Cn, and then
G = Cn, a contradiction. So G is not strongly connected.

Let G1, G2, . . . , Gk be the strong components of G. Then Gi 9 G j or
G j 9 Gi for any 1 ≤ i < j ≤ k. Otherwise, we can get a new strong
component constructed by Gi and G j. If there exist two vertices u, v ∈ V (G)
such that (u, v) /∈A (G) and (v, u) /∈A (G), then C2 ⊆ G. Since G is acyclic,
this is a contradiction. Then there is at least one arc between any two vertices
in G. So, without loss of generality, we get Gi 9 G j and G j → Gi in G. Then
G j 7→ Gi in G. Hence Gi 7→ G j in G for any 1≤ i < j ≤ k.

Since
ρA(G) = max

1≤i≤k

¦

ρA(Gi)
©

= 1,

we obtain ρA(Gi) = 0 or ρA(Gi) = 1, and there is at least one Gi with
ρA(Gi) = 1 for any i = 1, 2, . . . , k. If ρA(Gi) = 0, then Gi = K1. So Gi = K1. If
ρA(Gi) = 1, then Gi is a directed cycle. So Gi = C2 and Gi = 2K1. Otherwise,
G is not acyclic. Then in G, we obtain Gi = K1 or Gi = 2K1, and Gi 7→ G j for
any 1≤ i < j ≤ k. Since ∆+(G) 6= n− 1 and ∆−(G) 6= n− 1, we get G1 6= K1

and Gk 6= K1.



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 116PDF page: 116PDF page: 116PDF page: 116

106 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

Hence, for the vertex set V (G) of G, we get

V (G) = {V (G1),V (G2), . . . ,V (Gk)}

such that
G1 = Gk = 2K1, Gi = K1 or Gi = 2K1

for any 1< i < k. And for any two parts Gi and G j with 1≤ i < j ≤ k,

Gi 7→ G j .

That is, if ρA(G) = 1, then G ∈ T 2
n,k with G1 = Gk = 2K1.

Case 2. ∆+(G) = n− 1 and ∆−(G) = n− 1.

Since G is an acyclic digraph with ∆+(G) = n− 1 and ∆−(G) = n− 1,
there exists only one vertex u ∈ V (G) with d+G (u) = n−1, one vertex v ∈ V (G)
with d−G (v) = n− 1 and u 6= v. Otherwise, G is not acyclic.

If G has none of the arcs (u, v) and (v, u) for u, v ∈ V (G), then C2 ⊆ G
and ρA(G)≥ 1.

If G has one of (u, v) and (v, u) for each u, v ∈ V (G), then G is a transitive
tournament. So G is also a transitive tournament and ρA(G) = 0.

Case 3. ∆+(G) = n− 1 and ∆−(G) 6= n− 1.

Since G is an acyclic digraph with ∆+(G) = n− 1, similar as in the proof
of Case 2, there exists only one vertex u ∈ V (G) with d+G (u) = n− 1 and
d−G (u) = 0.

Since ∆−(G) 6= n− 1, there are at least two vertices u, v ∈ V (G) such that
(u, v) /∈A (G) and (v, u) /∈A (G). Otherwise, G is a transitive tournament, a
contradiction. So C2 ⊆ G and ρA(G)≥ 1.

If ρA(G) = 1, then any two directed cycles in G are vertex-disjoint. Similar
as in the proof of Case 1, if ρA(G) = 1, then G ∈ T 2

n,k with G1 = K1 and
Gk = 2K1.

Case 4. ∆+(G) 6= n− 1 and ∆−(G) = n− 1.

Similar as in the proof of Case 3, we get ρA(G) ≥ 1. And if ρA(G) = 1,
then G ∈ T 2

n,k with G1 = 2K1 and Gk = K1.
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5.2. Lower bounds for the eccentricity spectral radius 107

Actually, the transitive tournament belongs to T 2
n,k with Gi = K1 for

all i = 1,2, . . . , n. Also 2K1 ∈ T 2
n,k and P2 is a transitive tournament. By

calculation,

ρA(T 2
n,k) =







0, if Gi = K1 for all i = 1,2, . . . , n,

1, otherwise.

This completes the proof.

In our next results we turn back to ρε(G) for digraphs G =
∨r

i=1 V i. We
start with a lemma before we state and prove our main result.

Lemma 5.5. Let G =
∨r

i=1 V i which each V i with ∆+(V i) 6= ni − 1 and
∆−(V i) 6= ni − 1.

(i) If n≥ 2r and n 6= 2r + 1, then

ρε(G)≥ 2,

with equality holding if and only if each V i ∈ T 2
ni ,ki

with G1 = Gki
= 2K1, where

i = 1, 2, . . . , r.

(ii) If n= 2r + 1, then

ρε(G)≥ 2







3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108






,

with equality holding if and only if V 1 = P3 and V i = 2K1, where i = 2, 3, . . . , r.

Proof. Since G =
∨r

i=1 V i in which each V i is an acyclic digraph of order ni

with ∆+(V i) 6= ni − 1 and ∆−(V i) 6= ni − 1, we get ni ≥ 2, diam(G) = 2,
∆+(G) 6= n − 1 and ∆−(G) 6= n − 1. By Lemma 5.1, ε(G) = 2A(G) and
G =

⋃r
i=1 V i . So

ρε(G) = 2ρA(G) = 2 max
1≤i≤k

n

ρA(V i)
o

.
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108 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

From Theorem 5.4, we get

ρA(V i)≥ 1,

with equality holding if and only if V i ∈ T 2
ni ,ki

with G1 = Gki
= 2K1. Especially,

when ni = 3,

ρA(V i) = ρA(P3) =
3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108
.

(i) If n ≥ 2r and n 6= 2r + 1, then we can find a suitable ni such that ni ≥ 2
and ni 6= 3 for all i = 1,2, . . . , r. Hence, we obtain

ρε(G)≥ 2,

with equality holding if and only if each V i ∈ T 2
ni ,ki

with G1 = Gki
= 2K1.

(ii) If n= 2r + 1, then there is only one V s with ns = 3, and all other V i have
ni = 2 for i 6= s. Without loss of generality, let n1 = 3 and ni = 2, where
i = 2,3, . . . , r. Hence, we obtain

ρε(G)≥ 2







3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108






,

with equality holding if and only if V 1 = P3 and V i = 2K1, where i =
2,3, . . . , r.

Now, we finally present our main result of this section.

Theorem 5.6. Let G =
∨r

i=1 V i .

(i) If n≥ 2r and n 6= 2r + 1, then

ρε(G)≥ 2,

with equality holding if and only if each V i ∈ T 2
ni ,ki

with G1 = Gki
= 2K1, where

i = 1,2, . . . , r.
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(ii) If n= 2r + 1, then

ρε(G)≥ 2







3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108






,

with equality holding if and only if V 1 = P3 and V i = 2K1, where i = 2, 3, . . . , r.

Proof. Since G =
∨r

i=1 V i , diam(G) = 2. From Lemma 5.2, we get ρε(G)> 2
if ∆+(G) = n− 1 or ∆−(G) = n− 1. We consider two cases to derive lower
bounds for ρε(G).

Case 1. n≥ 2r and n 6= 2r + 1.

If there exists at least one V i with ∆+(V i) = ni − 1 or ∆−(V i) = ni − 1,
then ∆+(G) = n− 1 or ∆−(G) = n− 1, and ρε(G)> 2. From Lemma 5.5, if
each V i has ∆+(V i) 6= ni − 1 and ∆−(V i) 6= ni − 1, then

ρε(G)≥ 2,

with equality holding if and only if each V i ∈ T 2
ni ,ki

with G1 = Gki
= 2K1,

where i = 1,2, . . . , r. So (i) holds.

Case 2. n= 2r + 1.

If there exists V i with ni = 1, then ∆+(G) = n− 1 and ∆−(G) = n− 1,
and G has one vertex with outdegree n− 1 and indegree n− 1. From (iii) in
Lemma 5.3, we get ρε(G) ≥ 3. If there is no V i with ni = 1, without loss of
generality, we get n1 = 3 and ni = 2, where i = 2, 3, . . . , r.

When ni = 2, V i = 2K1 or V i = P2. If V i = P2, we also have∆+(G) = n−1
and ∆−(G) = n− 1. If there exist at least two V i = P2, then from (i) and (ii)
in Lemma 5.3, we get ρε(G)≥ 3. If there exists only one V i = P2, then ε(G)
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contains a principal submatrix ε′, where

ε′ =





















0 1 1 1

2 0 0 0

0 1 0 2

0 1 2 0





















.

From Lemma 1.3, we get ρε(G)≥ ρ(ε′)≈ 2.73.

When n1 = 3, we consider the following cases.

Case 2.1. If ∆+(V 1) 6= 2 and ∆−(V 1) 6= 2, by the proof of Theorem 5.4 and
Lemma 5.5, we get

ρε(G)≥ 2







3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108






≈ 2.65,

with equality holding if and only if V 1 = P3 and V i = 2K1, where i =
2,3, . . . , r.

Case 2.2. If ∆+(V 1) = 2 and ∆−(V 1) = 2, then V 1 = B3. ε(G) contains a
principal submatrix ε′′, where

ε′′ =















0 1 1

2 0 1

2 2 0















.

From Lemma 1.3, we get ρε(G)≥ ρ(ε′′)≈ 2.85.

Case 2.3. If ∆+(V 1) = 2 and ∆−(V 1) 6= 2, then V 1 =
−→
K 1,2. ε(G) contains a

principal submatrix ε′′′, where
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ε′′′ =















0 1 1

2 0 2

2 2 0















.

From Lemma 1.3, we get ρε(G)≥ ρ(ε′′′)≈ 3.24.

Case 2.4. If ∆+(V 1) 6= 2 and ∆−(V 1) = 2, then V 1 =
←−
K 1,2. Similar to Case

2.3, we get ρε(G)≥ 3.24.

Hence, we obtain

ρε(G)≥ 2







3

È

1

2
+

r

23

108
+

3

È

1

2
−

r

23

108






≈ 2.65,

with equality holding if and only if V 1 = P3 and V i = 2K1, where i = 2, 3, . . . , r.
So (ii) holds.

This completes the proof.

To illustrate Lemma 5.5 and Theorem 5.6 better, we give some examples,
as shown in Figures 5.3 and 5.4.

5.3 Upper bounds for the eccentricity spectral radius

In this section, we give upper bounds for the eccentricity spectral radius of
some special join digraphs in Gn,r . Recall that for the join digraph G =

∨r
i=1 V i ,

in which each V i is an acyclic digraph, we let

ε(G) =





















ε11 ε12 · · · ε1r

ε21 ε22 · · · ε2r

...
...

...

εr1 εr2 · · · εr r





















,
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112 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

Figure 5.3: The digraphs in G10,3 with the minimal eccentricity
spectral radius.

Figure 5.4: The digraph in G7,3 with the minimal eccentricity
spectral radius.
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5.3. Upper bounds for the eccentricity spectral radius 113

where each εii is a principal submatrix of ε(G) corresponding to V i .

Next, we are going to state and prove a number of results for special
choices of the maximum outdegree (and indegree) of the V i. We gather the
obtained results at the end of this chapter.

Theorem 5.7. Let G =
∨r

i=1 V i . If each V i has ∆+(V i) 6= ni−1 and ∆−(V i) 6=
ni − 1, then

ρε(G)≤ 2(n− 2r + 1),

with equality holding if and only if G =
↔
K n−2r+2,2,...,2.

Proof. From the proof of Lemma 5.5, we get

ρε(G) = 2ρA(G) = 2 max
1≤i≤k

n

ρA(V i)
o

.

For V i , we know
ρA(V i)≤ ni − 1,

with equality holding if and only if V i =
↔
K ni

. That is, V i = niK1.

Without loss of generality, let n1 ≥ n2 ≥ · · · ≥ nr . Since ∆+(V i) 6= ni − 1
and ∆−(V i) 6= ni − 1, we have ni ≥ 2 and n1 ≤ n− 2(r − 1). So ρA(V i) ≤
ni − 1≤ n− 2r + 1. Then when n1 = n− 2(r − 1),

ρε(G) = 2 max
1≤i≤k

n

ρA(V i)
o

≤ 2ρA(
↔
K n−2r+2) = 2(n− 2r + 1).

That means, when G = (n− 2r + 2)K1 ∨ 2K1 ∨ . . .∨ 2K1
︸ ︷︷ ︸

r−1

=
↔
K n−2r+2,2,...,2,

ρε(G)≤ ρε(
↔
K n−2r+2,2,...,2) = 2(n− 2r + 1),

with equality holding if and only if G =
↔
K n−2r+2,2,...,2.

Theorem 5.8. Let G =
∨r

i=1 V i . If each V i has ∆+(V i) = ni−1 and ∆−(V i) =
ni − 1, then

ρε(G)≤ ρε(Bn−r+1∨
↔
K r−1),
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114 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

with equality holding if and only if G = Bn−r+1∨
↔
K r−1.

Proof. Since ∆+(V i) = ni − 1 and ∆−(V i) = ni − 1, there is only one vertex
with outdegree ni−1 in V i and one vertex with indegree ni−1 in V i . Without
loss of generality, we let V (V i) = {v i

1, v i
2, . . . , v i

ni
} with d+

V i (v
i
1) = ni − 1 and

d−
V i (v

i
ni
) = ni − 1.

From Lemma 5.1, if ∆+(G) = n− 1 and ∆−(G) = n− 1, then

ε(G) = 2A(G) + A(G′),

where G′ is the subdigraph of G obtained by deleting the arcs (vi , v j) with
d+G (vi) 6= n− 1 and d−G (v j) 6= n− 1, for all i, j = 1,2, . . . , n. By the definition
of ε(G), we have

εii = 2A(V i) + A(Bni
)

and

εis =





























1 1 · · · 1 1

0 0 · · · 0 1
...

...
...

...

0 0 · · · 0 1

0 0 · · · 0 1





























ni×ns

,

where i, s = 1, 2, . . . , r and i 6= s. Obviously, when V i = Bni
, A(V i) is maximal.

That is,

εii =



































0 1 1 · · · 1 1

2 0 2 · · · 2 1

2 2 0 · · · 2 1
...

...
...

...
...

2 2 2 · · · 0 1

2 2 2 · · · 2 0



































ni×ni

.
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5.3. Upper bounds for the eccentricity spectral radius 115

Let GB =
∨r

i=1 Bni
. If G 6= GB, then we have 0 < ε(G) < ε(GB). Since

GBε is strongly connected, ε(GB) is irreducible. From Lemma 1.3, ρε(G) <
ρε(GB). Hence, ρε(G)≤ ρε(GB), with equality holding if and only if G = GB.
Without loss of generality, let n1 ≥ n2 ≥ · · · ≥ nr . Next we prove that when
n1 = n− r + 1, n2 = n3 = · · ·= nr = 1, ρε(GB) is maximal.

Suppose that

x= (x1
1 , x1

2 , . . . , x1
n1

, x2
1 , x2

2 , . . . , x2
n2

, . . . , x r
1, x r

2, . . . , x r
nr
)T

is a Perron vector of ε(GB) corresponding to the eccentricity spectral radius
ρε = ρε(GB), where x i

j is the characteristic component corresponding to v i
j of

Bni
for each 1≤ i ≤ r and 1≤ j ≤ ni .

Since ε(GB)x= ρεx, we have











∑r
s=1

∑ns
t=1 x s

t − x i
1 = ρε x i

1,
∑ni−1

t=1 2x i
t − 2x i

j +
∑r

s=1 x s
ns
= ρε x i

j ,
∑ni−1

t=1 2x i
t − x i

ni
+
∑r

s=1 x s
ns
= ρε x i

ni
,

where i = 1,2, . . . , r and j = 2,3, . . . , ni − 1. Since each V i = Bni
, we get

x i
2 = x i

3 = · · ·= x i
ni−1. So we have











∑r
s=1

∑ns
t=1 x s

t = (ρε + 1)x i
1,

2x i
1+
∑r

s=1 x s
ns
= (ρε − 2ni + 6)x i

2,

(ρε + 2)x i
2 = (ρε + 1)x i

ni
.

From Lemma 1.5 (Perron-Frobenius Theorem), then x1
1 = x2

1 = · · · = x r
1 =

1
ρε+1

, x i
ni
> x s

ns
and x i

j > x s
t for 1 ≤ i < s ≤ r, j = 2,3, . . . , ni − 1 and

t = 2,3, . . . , ns − 1.

We assume that n1 ≥ · · · ≥ ns ≥ 2 > 1 = ns+1 = · · · = nr . Let GB ′ =
∨r

i=2,i 6=s Bni
∨ Bn1+ns−1 ∨ K1, see Figure 5.5. Then

GB ′ = GB − {(v1
j , vs

t )| j = 2,3, . . . , n1, t = 2, 3, . . . , ns}

− {(vs
t , v1

j )| j = 1,2, . . . , n1− 1, t = 2, 3, . . . , ns}
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116 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

− {(vs
t , vs

ns
)|t = 2,3, . . . , ns − 1}

+ {(vs
t , vs

1)|t = 2,3, . . . , ns}.

Now we prove ρε(GB ′)> ρε(GB).

We get

ε(GB ′)x− ε(GB)x=











0, y1, . . . , y1
︸ ︷︷ ︸

n1−1

, 0, . . . , 0
︸ ︷︷ ︸

∑s−1
i=2 ni+1

, y2, . . . , y2
︸ ︷︷ ︸

ns−2

, y3, 0, . . . , 0
︸ ︷︷ ︸

∑r
i=s+1 ni











T

,

where y1 = x s
1 + 2

∑ns−1
t=2 x s

t + x s
ns

, y2 = 2
∑n1−1

j=1 x1
j − x s

1 + x s
ns

and y3 =

2
∑n1−1

j=1 x1
j − x s

1.

Since x1
1 = x s

1, we have y2 ≥ y3 ≥ 0. Obviously, y1 > 0. So we get

ε(GB ′)x− ε(GB)x> 0.

That is,
ε(GB ′)x> ε(GB)x= ρε(G

B)x.

From Lemma 1.6, we obtain ρε(GB ′)> ρε(GB).

We perform the above operation as many times as possible until n1 = n−
r+1> 1 = n2 = · · · = nr . Finally, we get Bn−r+1∨

↔
K r−1 attaining the maximal

eccentricity spectral radius of G =
∨r

i=1 V i if each V i has ∆+(V i) = ni − 1
and ∆−(V i) = ni − 1.

Theorem 5.9. Let G =
∨r

i=1 V i . If each V i has ∆+(V i) = ni−1 and ∆−(V i) 6=
ni − 1, then

ρε(G)< ρε(
→
K1,n−r ∨

↔
K r−1).

Proof. Similar to the proof of Theorem 5.8, since ∆+(V i) = ni − 1 and
∆−(V i) 6= ni −1, there is only one vertex with outdegree ni −1 in V i , and we
let V (V i) = {v i

1, v i
2, . . . , v i

ni
} with d+

V i (v
i
1) = ni −1. And ε(G) is maximal when

each V i =
→
K1,ni−1.
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Figure 5.5: The digraphs GB and GB ′.
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118 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

Let G
→
K =

∨r
i=1

→
K1,ni−1 with n1 ≥ n2 ≥ · · · ≥ nr ≥ 3. For ε(G

→
K ) = [εis]r×r ,

we get

εis =





























1 1 · · · 1 1

0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

0 0 · · · 0 0





























ni×ns

and εii =



































0 1 1 · · · 1 1

2 0 2 · · · 2 2

2 2 0 · · · 2 2
...

...
...

...
...

2 2 2 · · · 0 2

2 2 2 · · · 2 0



































ni×ni

,

where i, s = 1, 2, . . . , r and i 6= s.

Since G
→
K
ε

is strongly connected, ε(G
→
K ) is an irreducible and nonnegative

matrix. Similarly, we get ρε(G)≤ ρε(G
→
K ), with equality holding if and only if

G = G
→
K . Next we prove ρε(G

→
K)< ρε(

→
K1,n−r ∨

↔
K r−1).

Similar to the proof of Theorem 5.8, suppose that

x= (x1
1 , x1

2 , . . . , x1
n1

, x2
1 , x2

2 , . . . , x2
n2

, . . . , x r
1, x r

2, . . . , x r
nr
)T

is a Perron vector of G
→
K corresponding to the eccentricity spectral radius

ρε = ρ(ε(G
→
K )), where x i

j is the characteristic component corresponding to v i
j

of
→
K1,ni−1 for each 1≤ i ≤ r and 1≤ j ≤ ni .

Since ε(G
→
K)x= ρεx, we have







∑r
s=1

∑ns
t=1 x s

t − x i
1 = ρε x i

1,
∑ni

t=1 2x i
t − 2x i

j = ρε x i
j ,

where i = 1, 2, . . . , r and j = 2, 3, . . . , ni . From Lemma 1.5 (Perron-Frobenius
Theorem), x1

1 = x2
1 = · · ·= x r

1 =
1

ρε+1
and x i

j =
2

ρε−2ni+4
x i

1.
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Figure 5.6: The digraphs G
→
K and G

→
K
′
.
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120 Chapter 5. Bounds for the eccentricity spectral radius of digraphs

Let G
→
K
′
=
→
K1,n−r ∨

↔
K r−1. That is, see Figure 5.6, G

→
K
′
=
∨r

i=1 V i with

V 1 =
→
K1,n−r and V 2 = V 3 = · · ·= V r = K1. Then we get

ε(G
→
K
′
)x− ε(G

→
K)x=









0, y1, . . . , y1
︸ ︷︷ ︸

n1−1

, 0, y2, . . . , y2
︸ ︷︷ ︸

n2−2

, 0, y3, . . . , y3
︸ ︷︷ ︸

n3−1

, . . . , 0, yr , . . . , yr
︸ ︷︷ ︸

nr−1









T

,

where y1 =
∑r

s=2(x
s
1+ 2

∑ns
t=2 x s

t), yi = 2
∑n1

t=1 x1
t +
∑r

s=2(x
s
1+ 2

∑ns
t=2 x s

t)−
(x i

1+ 2
∑ni

t=2 x i
t)− x i

1 for i = 2, 3, . . . , r.

Since x1
1 = x i

1, we have yi ≥ 0 for i = 2,3, . . . , r. Obviously, y1 > 0. So
we get

ε(G
→
K
′
)x> ε(G

→
K)x= ρ(ε(G

→
K))x.

From Lemma 1.6, we obtain ρ(ε(G
→
K
′
))> ρ(ε(G

→
K)).

Hence, we obtain

ρε(G)< ρε(
→
K1,n−r ∨

↔
K r−1),

if each V i has ∆+(V i) = ni − 1 and ∆−(V i) 6= ni − 1.

Theorem 5.10. Let G =
∨r

i=1 V i. If each V i has ∆+(V i) 6= ni − 1 and
∆−(V i) = ni − 1, then

ρε(G)< ρε(
←
K1,n−r ∨

↔
K r−1).

Proof. Similar to the proof of Theorem 5.8, since ∆+(V i) 6= ni − 1 and
∆−(V i) = ni − 1, there is only one vertex with indegree ni − 1 in V i , and we
let V (V i) = {v i

1, v i
2, . . . , v i

ni
} with d−

V i (v
i
1) = ni −1. And ε(G) is maximal when

each V i =
←
K1,ni−1.
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5.3. Upper bounds for the eccentricity spectral radius 121

Let G
←
K =

∨r
i=1

←
K1,ni−1 with n1 ≥ n2 ≥ · · · ≥ nr ≥ 3. For ε(G

←
K ) = [εis]r×r ,

we get

εis =





























1 0 · · · 0 0

1 0 · · · 0 0
...

...
...

...

1 0 · · · 0 0

1 0 · · · 0 0





























ni×ns

and εii =



































0 2 2 · · · 2 2

1 0 2 · · · 2 2

1 2 0 · · · 2 2
...

...
...

...
...

1 2 2 · · · 0 2

1 2 2 · · · 2 0



































ni×ni

,

where i, s = 1, 2, . . . , r and i 6= s.

Since G
←
K
ε

is strongly connected, ε(G
←
K ) is an irreducible and nonnegative

matrix. Similarly, we get ρε(G)≤ ρε(G
←
K ), with equality holding if and only if

G = G
←
K . Next we prove ρε(G

←
K)< ρε(

←
K1,n−r ∨

↔
K r−1).

Let G
←
K
′
=
←
K1,n−r ∨

↔
K r−1. That is, see Figure 5.7, G

←
K
′
=
∨r

i=1 V i with

V 1 =
←
K1,n−r and V 2 = V 3 = · · ·= V r = K1.

Actually, ε(G
←
K) =

�

ε(G
→
K)
�T

. So ρε(
∨r

i=1

←
K1,ni−1) = ρε(

∨r
i=1

→
K1,ni−1).

Also,
←
K1,n−r ∨

↔
K r−1=

�→
K1,n−r ∨

↔
K r−1

�T
. Hence, we obtain

ρε(G)< ρε(
←
K1,n−r ∨

↔
K r−1),

if each V i has ∆+(V i) 6= ni − 1 and ∆−(V i) = ni − 1.

Theorem 5.11. Let G = V∨
↔
K r−1, in which V is an acyclic digraph of order

n− r + 1. Then

ρε(G)≤
2n− r − 2+

p

4n2+ 4n− 4r − 8nr + 5r2

2
,

with equality holding if and only if G =
↔
K n−r+1,1,...,1.
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Figure 5.7: The digraphs G
←
K and G

←
K
′
.
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5.3. Upper bounds for the eccentricity spectral radius 123

Proof. Since G = V∨
↔
K r−1, for any u ∈

↔
K r−1, we get that the elements of the

row and column of vertex u of ε(G) are all 1, except for the diagonal element.
Then

ε(G) = ε(V∨
↔
K r−1) =









ε∗ J(n−r+1)×(r−1)

J(r−1)×(n−r+1) Jr−1− Ir−1









.

By the definition of eccentricity matrix, ε∗ ≤ 2(Jn−r+1− In−r+1). By the proof
of Theorems 5.7-5.10, ε∗ = 2(Jn−r+1− In−r+1) if and only if V = (n− r+1)K1.
So we obtain

ρε(G)≤ ρε((n− r + 1)K1∨
↔
K r−1) = ρε(

↔
K n−r+1,1,...,1).

Since

ε(
↔
K n−r+1,1,...,1) =









2(Jn−r+1− In−r+1) J(n−r+1)×(r−1)

J(r−1)×(n−r+1) Jr−1− Ir−1









,

we get that the equitable quotient matrix of ε(
↔
K n−r+1,1,...,1) is

B(
↔
K n−r+1,1,...,1) =









2(n− r) r − 1

n− r + 1 r − 2









.

By Lemma 1.7, we obtain

ρε(
↔
K n−r+1,1,...,1) = ρ(B(

↔
K n−r+1,1,...,1))

=
2n− r − 2+

p

4n2+ 4n− 4r − 8nr + 5r2

2
.

From Theorems 5.7-5.10, for G =
∨r

i=1 V i , we get:
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(i) if each V i has ∆+(V i) 6= ni − 1 and ∆−(V i) 6= ni − 1, then

ρε(G)≤ ρε(
↔
K n−2r+2,2,...,2)< ρε(

↔
K n−r+1,1,...,1);

(ii) if each V i has ∆+(V i) = ni − 1 and ∆−(V i) = ni − 1, then

ρε(G)≤ ρε(Bn−r+1∨
↔
K r−1);

(iii) if each V i has ∆+(V i) = ni − 1 and ∆−(V i) 6= ni − 1, then

ρε(G)< ρε(
→
K1,n−r ∨

↔
K r−1);

(v) if each V i has ∆+(V i) 6= ni − 1 and ∆−(V i) = ni − 1, then

ρε(G)< ρε(
←
K1,n−r ∨

↔
K r−1).

From Theorem 5.11, for G = V∨
↔
K r−1, in which V is an acyclic digraph

of order n− r + 1, we get

ρε(G)≤ ρε(
↔
K n−r+1,1,...,1).

So we guess that
↔
K n−r+1,1,...,1 attains the upper bound for the eccentricity

spectral radius among all join digraphs in Gn,r . Since we were unable to prove
or refute this, we leave it as a challenging open problem.

Problem 5.1. Find the upper bound and characterize the maximal digraphs
for the eccentricity spectral radius among all join digraphs with a fixed dichro-
matic number.
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Summary

The research that led to this thesis is of a pure theoretical nature, and part
of the general area within mathematics which is commonly referred to as
algebraic graph theory. One of the mainstreams in this area is the study
of eigenvalues of certain matrices associated with graphs, as well as their
significance for the structure and properties of the graphs. As such, these
eigenvalues are closely related to other graph invariants, and have proved
to be relevant in applications such as chemical graph theory. However, the
results reported here are mainly of theoretical interest.

This thesis contains a number of new contributions to the research field
that studies the spectral properties of graphs, involving the eigenvalues of
different types of matrices associated with these graphs. One of the central
problems in this area is the problem of finding the extremal values and
characterizing the extremal graphs for invariants involving the eigenvalues of
the graph matrix. In this thesis, we restrict ourselves to studying the spectral
properties of digraphs, since results on digraphs in this area are relatively
scarce.

Commonly studied concepts related to the eigenvalues of digraph matrices
are the spectral radius, the k-th spectral moment, the spread, and the sum of
k largest eigenvalues. In such studies, one of the approaches is to restrict the
attention to digraph classes for which a certain graph parameter is fixed. In
this thesis we focus on digraphs with a fixed dichromatic number. With respect
to the choice of particular matrices, in this thesis we focus on the spectral
properties for the Laplacian matrix, the Aα-matrix, and the eccentricity matrix.

In Chapters 2 and 3, we focus on studying the k-th spectral moment. In
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Chapters 4 and 5, we focus on studying the spectral radius. In particular,
in Chapter 2 we study the k-th spectral moment of the Laplacian matrix
of digraphs. In Chapters 3 and 4, we study the k-th spectral moment and
spectral radius of the Aα-matrix of digraphs, respectively. In Chapter 5, we
study the spectral radius of the eccentricity matrix of digraphs. Our main new
contributions to the field can be described as follows.

In Chapter 2, we characterize the digraphs which attain the minimal
and maximal Laplacian energy among all digraphs with a fixed dichromatic
number. We also determine sharp bounds for the third Laplacian spectral
moment among all join digraphs.

In Chapter 3, we obtain the digraphs which attain the minimal and max-
imal Aα energy among all digraphs with a fixed dichromatic number. We
also determine sharp bounds for the third Aα spectral moment among all join
digraphs. These results generalize the results about the second and third
Laplacian spectral moments of digraphs in Chapter 2.

We find that the Laplacian matrix and the Aα-matrix have much in common
with respect to the second and third spectral moments. In particular, the
second spectral moments of the Laplacian matrix and the A 1

2
-matrix are the

same. Concerning the spectral radius, scholars often study the spectral radius
of the adjacency matrix, signless Laplacian matrix and Aα-matrix. But scholars
rarely study the spectral radius of the Laplacian matrix, since the Laplacian
matrix is not a nonnegative matrix. Also, the extremal digraphs for the
Laplacian spectral radius may be very different from that of the Aα-matrix.

In Chapter 4, we characterize the digraph which has the maximal Aα
spectral radius among all digraphs with a fixed dichromatic number, by using
the equitable quotient matrix. This provides a new proof of the results by
Liu et al. [89]. Moreover, we obtain the digraph which has the minimal Aα
spectral radius of the join of in-trees with a fixed dichromatic number.

In Chapter 5, we consider bounds for the spectral radius of the eccentricity
matrix of join digraphs with a fixed dichromatic number. We attain lower
bounds for the eccentricity spectral radius among all join digraphs with a
fixed dichromatic number, and give upper bounds for the eccentricity spectral
radius of some special join digraphs with a fixed dichromatic number. These
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extremal digraphs for the eccentricity spectral radius are very different from
those in the other chapters.

The eccentricity matrix of a graph is a relatively new matrix. Although
there are already several results on eccentricity matrices of graphs, the study
regarding eccentricity matrices of digraphs has just begun. The eccentricity
matrix seems to be difficult to study. In particular, the eccentricity matrix
of a digraph has the additional difficulty of being asymmetric. This is re-
flected by the complex structure of the extremal digraphs, complicating their
characterization.

The asymmetric nature of the matrices associated with digraphs poses
a great difficulty for solving problems of the above type. However, since
undirected graphs can be considered as a special type of digraphs, results
on digraphs are more general, and therefore studying them is worthwhile.
Throughout this thesis, we present several open problems that remain un-
solved. This shows that there is still much to be explored in this fascinating
area of algebraic graph theory.
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Samenvatting

Het onderzoek dat heeft geleid tot dit proefschrift is puur theoretisch van
aard, en deel van het algemene gebied binnen de wiskunde dat meestal
wordt aangeduid als algebraïsche grafentheorie. Eén van de hoofdrichtingen
binnen dit gebied is de studie van eigenwaarden van bepaalde met grafen
geassocieerde matrices, en hun belang voor de structuur en eigenschappen
van die grafen. Als zodanig zijn deze eigenwaarden nauw verbonden met
andere invarianten van grafen, en hebben ze hun belang in toepassingen zoals
chemische grafentheorie bewezen. De hier gerapporteerde resultaten zijn
echter hoofdzakelijk van theoretische betekenis.

Dit proefschrift bevat een aantal nieuwe bijdragen op het gebied van de
spectrale grafentheorie. Dit deelgebied van de grafentheorie richt zich op het
bestuderen van structurele eigenschappen van grafen die verband houden
met de eigenwaarden van bepaalde matrices die aan de hand van die grafen
gedefinieerd kunnen worden. In dit proefschrift richten we ons met name
op gerichte grafen en het bepalen van de extreme waarden van invarianten
die gebaseerd zijn op de eigenwaarden van drie typen matrices, alsmede
het karakteriseren van de structuur van de bijbehorende gerichte grafen. De
drie typen matrices waartoe we ons beperken zijn de Laplacian matrix, de
Aα-matrix en de excentriciteitsmatrix.

In Hoofdstuk 2 en 3 bestuderen we de extreme waarden en extremale
gerichte grafen van het k-de spectrale moment. In Hoofdstuk 4 en 5 richten we
ons op het bestuderen van de spectrale straal. Daarbij gaat het in Hoofdstuk 2
om het k-de spectrale moment van de Laplacian matrix van gerichte grafen. In
Hoofdstuk 3 en 4 richten we ons respectievelijk op het k-de spectrale moment
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en de spectrale straal van de Aα-matrix van gerichte grafen. In Hoofdstuk 5
bestuderen we de spectrale straal van de excentriciteitsmatrix van gerichte
grafen.

In het bijzonder bepalen we in Hoofdstuk 2 de gerichte grafen met de
minimale en maximale Laplacian energie, onder alle gerichte grafen met
een vast dichromatisch getal. We bepalen tevens scherpe grenzen voor het
derde Laplacian spectrale moment voor alle gerichte grafen met een vast
dichromatisch getal.

In Hoofdstuk 3 doen we hetzelfde, maar dan voor de minimale en maxi-
male energie behorend by de Aα-matrix, wederom onder alle gerichte grafen
met een vast dichromatisch getal. We bepalen ook wederom scherpe grenzen
voor het derde spectrale moment van deze Aα-matrix onder alle gerichte
grafen met een vast dichromatisch getal. Deze resultaten veralgemeniseren
de resultaten betreffende het tweede en derde Laplacian spectrale moment
van gerichte grafen uit Hoofdstuk 2.

We constateren dat de Laplacian matrix en de Aα-matrix veel overeenkom-
sten vertonen wat betreft het tweede en derde spectrale moment. Met name
de tweede spectrale momenten van de Laplacian matrix en de A 1

2
-matrix

komen overeen. Voor wat betreft de spectrale straal bestuderen deskundigen
vaak de spectrale straal van de buurmatrix, de tekenloze Laplacian matrix
en de Aα-matrix. Maar wetenschappers bestuderen in veel mindere mate de
spectrale straal van de Laplacian matrix, omdat de Laplacian matrix geen
niet-negatieve matrix is. Ook kunnen de extremale grafen voor de spectrale
straal van de Laplacian matrix sterk verschillen van die van de Aα-matrix.

In Hoofdstuk 4 bepalen we de gerichte graaf die de maximale spectrale
straal van de Aα-matrix aanneemt, onder alle gerichte grafen met een vast
dichromatisch getal, door gebruik te maken van de ‘equitable quotient’ ma-
trix. Dit levert een nieuw bewijs op van de resultaten van Liu et al. [89].
Bovendien bepalen we de gerichte graaf met de minimale spectrale straal
van de Aα-matrix onder de ‘join’ van in-bomen met een vast dichroma-
tisch getal. Tenslotte bepalen we in dit hoofdstuk de maximale gerichte
graaf voor de spectrale straal van de Aα-matrix onder alle ‘joins’ als de
gerichte graaf G =

∨r
i=1 V i waarbij elke V i een transitief toernooi is met



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 141PDF page: 141PDF page: 141PDF page: 141

Samenvatting 131

|V (V i)−V (V j)| ≤ 1.

In Hoofdstuk 5 beschouwen we de grenzen voor de spectrale straal van de
excentriciteitsmatrix van ‘joins’ met een vast dichromatisch getal. We stellen
de ondergrenzen vast voor de spectrale straal van de excentriciteitsmatrix
onder alle ‘joins’ met een vast dichromatisch getal en geven bovengrenzen
voor de spectrale straal van de excentriciteitsmatrix van enkele speciale ‘joins’
met een vast dichromatisch getal. Deze extremale gerichte grafen voor de
excentriciteitsmatrix verschillen sterk van die uit de andere hoofdstukken.

De excentriciteitsmatrix van grafen is een relatief nieuwe matrix. Hoewel
er al een aantal resultaten bekend zijn voor de excentriciteitsmatrix van
ongerichte grafen, is de studie naar eigenschappen van de excentriciteitsmatrix
van gerichte grafen nog maar net begonnen. Deze excentriciteitsmatrix lijkt
een stuk moeilijker te bestuderen, en de extremale grafen zien er complexer
uit waardoor ze moeilijker te karakteriseren zijn.

Daarbij komt het probleem van de asymmetrie van dit soort matrices voor
gerichte grafen. Die asymmetrie bemoeilijkt de studie naar de eigenschappen
van die matrices en in het bijzonder het bepalen van hun extreme waarden
wat betreft invarianten van hun eigenwaarden. Aangezien ongerichte grafen
als een speciaal type gerichte grafen kunnen worden opgevat, zijn studies
naar gerichte grafen meer omvattend en zeer de moeite waard.

Naast de nieuwe bijdragen presenteren we in dit proefschrift tevens ver-
schillende open problemen die onopgelost blijven. Dit toont onder andere
aan dat er nog veel diepgaand onderzoek met betrekking tot gerichte grafen
mogelijk is, met name binnen het fascinerende gebied van de algebraïsche
grafentheorie.
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[10] Ş.B. Bozkurt, D. Bozkurt, On the signless Laplacian spectral radius of
digraphs, Ars Combin. 108 (2013) 193–200.
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[22] S.M. Cioabǎ, E.R. van Dam, J.H. Koolen, J.H. Lee, A lower bound for
the spectral radius of graphs with fixed diameter, European J. Combin.
31 (2010) 1560–1566.

[23] N. Cohen, F. Havet, W. Lochet, R. Lopes, Bispindles in strongly connected
digraphs with large chromatic number, Electron. J. Combin. 25 (2018)
Paper No. 2.39, 19 pp.

[24] N. Cohen, F. Havet, W. Lochet, N. Nisse, Subdivisions of oriented cycles
in digraphs with large chromatic number, J. Graph Theory 89 (2018)
439–456.
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Math. Comput. Chem. 80 (2018) 85–106.

[92] I. Mahato, R. Gurusamy, M.R. Kannan, S. Arockiaraj, Spectra of eccen-
tricity matrices of graphs, Discrete Appl. Math. 285 (2020) 252–260.



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 151PDF page: 151PDF page: 151PDF page: 151

BIBLIOGRAPHY 141

[93] I. Mahato, R. Gurusamy, M.R. Kannan, S. Arockiaraj, On the spectral ra-
dius and the energy of eccentricity matrices of graphs, Linear Multilinear
Algebra 71 (2023) 5–15.

[94] I. Mahato, M.R. Kannan, On the eccentricity matrices of trees: inertia
and spectral symmetrys, Discrete Math. 345 (2022) 113067.

[95] S.J. Miao, S.C. Li, Characterizing star factors via the size, the spectral
radius or the distance spectral radius of graphs, Discrete Appl. Math. 326
(2023) 17–32.

[96] B. Mohar, Eigenvalues and colorings of digraphs, Linear Algebra Appl.
432 (2010) 2273–2277.

[97] R. Nasiri, H.R. Ellahi, A. Gholami, Ordering c-cyclic graphs with respect
to signless Laplacian spectral moments, Ars Combin. 140 (2018) 293–
300.

[98] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin.
Theory Ser. B 33 (1982) 265–270.

[99] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete
Math. 11 (2017) 81–107.

[100] V. Nikiforov, G. Pastén, O. Rojo, R.L. Soto, On the Aα-spectra of trees,
Linear Algebra Appl. 520 (2017) 286–305.

[101] V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of Aα(G),
Linear Algebra Appl. 519 (2017) 156–163.

[102] M.R. Oboudi, Distance spectral radius of complete multipartite graphs
and majorization, Linear Algebra Appl. 583 (2019) 134–145.

[103] X.F. Pan, X.G. Liu, H.Q. Liu, On the spectral moment of quasi-trees,
Linear Algebra Appl. 436 (2012) 927–934.

[104] A.K. Patel, L. Selvaganesh, S.K. Pandey, Energy and inertia of the
eccentricity matrix of coalescence of graphs, Discrete Math. 344 (2021)
112591.



619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang619904-L-sub01-bw-Yang
Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023Processed on: 10-10-2023 PDF page: 152PDF page: 152PDF page: 152PDF page: 152

142 BIBLIOGRAPHY

[105] J.A. de la Peña, L. Mendoza, J. Rada, Comparing momenta and π-
electron energy of benzenoid molecules, Discrete Math. 302 (2005)
77–84.

[106] I. Peña, J. Rada, Energy of digraphs, Linear Multilinear Algebra 56
(2008) 565–579.

[107] K. Perera, Y. Mizoguchi, Laplacian energy of directed graphs and mini-
mizing maximum outdegree algorithms, MI Preprint Series (2010) 2010-
35.

[108] S. Pirzada, H.A. Ganie, On the Laplacian eigenvalues of a graph and
Laplacian energy, Linear Algebra Appl. 486 (2015) 454–468.

[109] H. Poincaré, Second Complement a l’Analysis Situs, Proc. Lond. Math.
Soc. 32 (1900) 277–308.

[110] X.Q. Qi, E. Fuller, R. Luo, G.D. Guo, C.Q. Zhang, Laplacian energy of
digraphs and a minimum Laplacian energy algorithm, Internat. J. Found.
Comput. Sci. 26 (2015) 367–380.

[111] Z.P. Qiu, Z.K. Tang, On the eccentricity spectra of threshold graphs,
Discrete Appl. Math. 310 (2022) 75–85.

[112] J. Rada, Lower bounds for the energy of digraphs, Linear Algebra Appl.
432 (2010) 2174–2180.
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