10 research outputs found

    Tighter Bounds on the Inefficiency Ratio of Stable Equilibria in Load Balancing Games

    Full text link
    In this paper we study the inefficiency ratio of stable equilibria in load balancing games introduced by Asadpour and Saberi [3]. We prove tighter lower and upper bounds of 7/6 and 4/3, respectively. This improves over the best known bounds in problem (19/18 and 3/2, respectively). Equivalently, the results apply to the question of how well the optimum for the L2L_2 -norm can approximate the L∞L_{\infty}-norm (makespan) in identical machines scheduling

    Multicast Network Design Game on a Ring

    Full text link
    In this paper we study quality measures of different solution concepts for the multicast network design game on a ring topology. We recall from the literature a lower bound of 4/3 and prove a matching upper bound for the price of stability, which is the ratio of the social costs of a best Nash equilibrium and of a general optimum. Therefore, we answer an open question posed by Fanelli et al. in [12]. We prove an upper bound of 2 for the ratio of the costs of a potential optimizer and of an optimum, provide a construction of a lower bound, and give a computer-assisted argument that it reaches 22 for any precision. We then turn our attention to players arriving one by one and playing myopically their best response. We provide matching lower and upper bounds of 2 for the myopic sequential price of anarchy (achieved for a worst-case order of the arrival of the players). We then initiate the study of myopic sequential price of stability and for the multicast game on the ring we construct a lower bound of 4/3, and provide an upper bound of 26/19. To the end, we conjecture and argue that the right answer is 4/3.Comment: 12 pages, 4 figure

    Convergence to Equilibrium of Logit Dynamics for Strategic Games

    Full text link
    We present the first general bounds on the mixing time of the Markov chain associated to the logit dynamics for wide classes of strategic games. The logit dynamics with inverse noise beta describes the behavior of a complex system whose individual components act selfishly and keep responding according to some partial ("noisy") knowledge of the system, where the capacity of the agent to know the system and compute her best move is measured by the inverse of the parameter beta. In particular, we prove nearly tight bounds for potential games and games with dominant strategies. Our results show that, for potential games, the mixing time is upper and lower bounded by an exponential in the inverse of the noise and in the maximum potential difference. Instead, for games with dominant strategies, the mixing time cannot grow arbitrarily with the inverse of the noise. Finally, we refine our analysis for a subclass of potential games called graphical coordination games, a class of games that have been previously studied in Physics and, more recently, in Computer Science in the context of diffusion of new technologies. We give evidence that the mixing time of the logit dynamics for these games strongly depends on the structure of the underlying graph. We prove that the mixing time of the logit dynamics for these games can be upper bounded by a function that is exponential in the cutwidth of the underlying graph and in the inverse of noise. Moreover, we consider two specific and popular network topologies, the clique and the ring. For games played on a clique we prove an almost matching lower bound on the mixing time of the logit dynamics that is exponential in the inverse of the noise and in the maximum potential difference, while for games played on a ring we prove that the time of convergence of the logit dynamics to its stationary distribution is significantly shorter

    Metastability of Asymptotically Well-Behaved Potential Games

    Full text link
    One of the main criticisms to game theory concerns the assumption of full rationality. Logit dynamics is a decentralized algorithm in which a level of irrationality (a.k.a. "noise") is introduced in players' behavior. In this context, the solution concept of interest becomes the logit equilibrium, as opposed to Nash equilibria. Logit equilibria are distributions over strategy profiles that possess several nice properties, including existence and uniqueness. However, there are games in which their computation may take time exponential in the number of players. We therefore look at an approximate version of logit equilibria, called metastable distributions, introduced by Auletta et al. [SODA 2012]. These are distributions that remain stable (i.e., players do not go too far from it) for a super-polynomial number of steps (rather than forever, as for logit equilibria). The hope is that these distributions exist and can be reached quickly by logit dynamics. We identify a class of potential games, called asymptotically well-behaved, for which the behavior of the logit dynamics is not chaotic as the number of players increases so to guarantee meaningful asymptotic results. We prove that any such game admits distributions which are metastable no matter the level of noise present in the system, and the starting profile of the dynamics. These distributions can be quickly reached if the rationality level is not too big when compared to the inverse of the maximum difference in potential. Our proofs build on results which may be of independent interest, including some spectral characterizations of the transition matrix defined by logit dynamics for generic games and the relationship of several convergence measures for Markov chains

    Convergence to Equilibrium of Logit Dynamics for Strategic Games

    Get PDF
    We present the first general bounds on the mixing time of the Markov chain associated to the logit dynamics for wide classes of strategic games. The logit dynamics with inverse noise β describes the behavior of a complex system whose individual components act selfishly according to some partial (“noisy”) knowledge of the system, where the capacity of the agent to know the system and compute her best move is measured by parameter β. In particular, we prove nearly tight bounds for potential games and games with dominant strategies. Our results show that for potential games the mixing time is bounded by an exponential in β and in the maximum potential difference. Instead, for games with dominant strategies the mixing time cannot grow arbitrarily with β. Finally, we refine our analysis for a subclass of potential games called graphical coordination games, often used for modeling the diffusion of new technologies. We prove that the mixing time of the logit dynamics for these games can be upper bounded by a function that is exponential in the cutwidth of the underlying graph and in β. Moreover, we consider two specific and popular network topologies, the clique and the ring. For the clique, we prove an almost matching lower bound on the mixing time of the logit dynamics that is exponential in β and in the maximum potential difference, while for the ring we prove that the time of convergence of the logit dynamics to its stationary distribution is significantly shorter

    Metastability of Logit Dynamics for Coordination Games

    Full text link
    Logit Dynamics [Blume, Games and Economic Behavior, 1993] are randomized best response dynamics for strategic games: at every time step a player is selected uniformly at random and she chooses a new strategy according to a probability distribution biased toward strategies promising higher payoffs. This process defines an ergodic Markov chain, over the set of strategy profiles of the game, whose unique stationary distribution is the long-term equilibrium concept for the game. However, when the mixing time of the chain is large (e.g., exponential in the number of players), the stationary distribution loses its appeal as equilibrium concept, and the transient phase of the Markov chain becomes important. It can happen that the chain is "metastable", i.e., on a time-scale shorter than the mixing time, it stays close to some probability distribution over the state space, while in a time-scale multiple of the mixing time it jumps from one distribution to another. In this paper we give a quantitative definition of "metastable probability distributions" for a Markov chain and we study the metastability of the logit dynamics for some classes of coordination games. We first consider a pure nn-player coordination game that highlights the distinctive features of our metastability notion based on distributions. Then, we study coordination games on the clique without a risk-dominant strategy (which are equivalent to the well-known Glauber dynamics for the Curie-Weiss model) and coordination games on a ring (both with and without risk-dominant strategy)

    Metastability of the Logit Dynamics for Asymptotically Well-Behaved Potential Games

    Get PDF
    Convergence rate and stability of a solution concept are classically measured in terms of “even- tually” and “forever”, respectively. In the wake of recent computational criticisms to this approach, we study whether these time frames can be updated to have states computed “quickly” and stable for “long enough”. Logit dynamics allows irrationality in players’ behavior, and may take time exponential in the number of players n to converge to a stable state (i.e., a certain distribution over pure strategy pro- files). We prove that every potential game, for which the behavior of the logit dynamics is not chaotic as n increases, admits distributions stable for a super-polynomial number of steps in n no matter the players’ irrationality, and the starting profile of the dynamics. The convergence rate to these metastable distributions is polynomial in n when the players are not too rational. Our proofs build upon the new concept of partitioned Markov chains, that might be of indepen- dent interest, and a number of involved technical contributions
    corecore