1,063 research outputs found

    On the Inductive Bias of Neural Tangent Kernels

    Get PDF
    State-of-the-art neural networks are heavily over-parameterized, making the optimization algorithm a crucial ingredient for learning predictive models with good generalization properties. A recent line of work has shown that in a certain over-parameterized regime, the learning dynamics of gradient descent are governed by a certain kernel obtained at initialization, called the neural tangent kernel. We study the inductive bias of learning in such a regime by analyzing this kernel and the corresponding function space (RKHS). In particular, we study smoothness, approximation, and stability properties of functions with finite norm, including stability to image deformations in the case of convolutional networks, and compare to other known kernels for similar architectures.Comment: NeurIPS 201

    On the Inductive Bias of Neural Tangent Kernels

    Get PDF
    International audienceState-of-the-art neural networks are heavily over-parameterized, making the optimization algorithm a crucial ingredient for learning predictive models with good generalization properties. A recent line of work has shown that in a certain over-parameterized regime, the learning dynamics of gradient descent are governed by a certain kernel obtained at initialization, called the neural tangent kernel. We study the inductive bias of learning in such a regime by analyzing this kernel and the corresponding function space (RKHS). In particular, we study smoothness, approximation, and stability properties of functions with finite norm, including stability to image deformations in the case of convolutional networks, and compare to other known kernels for similar architectures

    Infinite Width Graph Neural Networks for Node Regression/ Classification

    Full text link
    This work analyzes Graph Neural Networks, a generalization of Fully-Connected Deep Neural Nets on Graph structured data, when their width, that is the number of nodes in each fullyconnected layer is increasing to infinity. Infinite Width Neural Networks are connecting Deep Learning to Gaussian Processes and Kernels, both Machine Learning Frameworks with long traditions and extensive theoretical foundations. Gaussian Processes and Kernels have much less hyperparameters then Neural Networks and can be used for uncertainty estimation, making them more user friendly for applications. This works extends the increasing amount of research connecting Gaussian Processes and Kernels to Neural Networks. The Kernel and Gaussian Process closed forms are derived for a variety of architectures, namely the standard Graph Neural Network, the Graph Neural Network with Skip-Concatenate Connections and the Graph Attention Neural Network. All architectures are evaluated on a variety of datasets on the task of transductive Node Regression and Classification. Additionally, a Spectral Sparsification method known as Effective Resistance is used to improve runtime and memory requirements. Extending the setting to inductive graph learning tasks (Graph Regression/ Classification) is straightforward and is briefly discussed in 3.5.Comment: 49 Pages, 2 Figures (with subfigures), multiple tables, v2: made table of contents fit to one page and added derivatives on GAT*NTK and GAT*GP in A.4, v3: shorten parts of introduction and fixed typos, added numberings to equations and discussion section, v4: fix two missing citations on page 1
    • …
    corecore