16 research outputs found

    Justification of Logarithmic Loss via the Benefit of Side Information

    Full text link
    We consider a natural measure of relevance: the reduction in optimal prediction risk in the presence of side information. For any given loss function, this relevance measure captures the benefit of side information for performing inference on a random variable under this loss function. When such a measure satisfies a natural data processing property, and the random variable of interest has alphabet size greater than two, we show that it is uniquely characterized by the mutual information, and the corresponding loss function coincides with logarithmic loss. In doing so, our work provides a new characterization of mutual information, and justifies its use as a measure of relevance. When the alphabet is binary, we characterize the only admissible forms the measure of relevance can assume while obeying the specified data processing property. Our results naturally extend to measuring causal influence between stochastic processes, where we unify different causal-inference measures in the literature as instantiations of directed information

    Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks

    Get PDF
    The inference of gene regulatory networks from gene expression data is a difficult problem because the performance of the inference algorithms depends on a multitude of different factors. In this paper we study two of these. First, we investigate the influence of discrete mutual information (MI) estimators on the global and local network inference performance of the C3NET algorithm. More precisely, we study different MI estimators (Empirical, Miller-Madow, Shrink and Schürmann-Grassberger) in combination with discretization methods (equal frequency, equal width and global equal width discretization). We observe the best global and local inference performance of C3NET for the Miller-Madow estimator with an equal width discretization. Second, our numerical analysis can be considered as a systems approach because we simulate gene expression data from an underlying gene regulatory network, instead of making a distributional assumption to sample thereof. We demonstrate that despite the popularity of the latter approach, which is the traditional way of studying MI estimators, this is in fact not supported by simulated and biological expression data because of their heterogeneity. Hence, our study provides guidance for an efficient design of a simulation study in the context of network inference, supporting a systems approach

    Genome-wide inference of regulatory networks in Streptomyces coelicolor

    Get PDF
    Background: The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. Results: In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Conclusions: Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

    Interpreting Patterns of Gene Expression: Signatures of Coregulation, the Data Processing Inequality, and Triplet Motifs

    Get PDF
    Various methods of reconstructing transcriptional regulatory networks infer transcriptional regulatory interactions (TRIs) between strongly coexpressed gene pairs (as determined from microarray experiments measuring mRNA levels). Alternatively, however, the coexpression of two genes might imply that they are coregulated by one or more transcription factors (TFs), and do not necessarily share a direct regulatory interaction. We explore whether and under what circumstances gene pairs with a high degree of coexpression are more likely to indicate TRIs, coregulation or both. Here we use established TRIs in combination with microarray expression data from both Escherichia coli (a prokaryote) and Saccharomyces cerevisiae (a eukaryote) to assess the accuracy of predictions of coregulated gene pairs and TRIs from coexpressed gene pairs. We find that coexpressed gene pairs are more likely to indicate coregulation than TRIs for Saccharomyces cerevisiae, but the incidence of TRIs in highly coexpressed gene pairs is higher for Escherichia coli. The data processing inequality (DPI) has previously been applied for the inference of TRIs. We consider the case where a transcription factor gene is known to regulate two genes (one of which is a transcription factor gene) that are known not to regulate one another. According to the DPI, the non-interacting gene pairs should have the smallest mutual information among all pairs in the triplets. While this is sometimes the case for Escherichia coli, we find that it is almost always not the case for Saccharomyces cerevisiae. This brings into question the usefulness of the DPI sometimes employed to infer TRIs from expression data. Finally, we observe that when a TF gene is known to regulate two other genes, it is rarely the case that one regulatory interaction is positively correlated and the other interaction is negatively correlated. Typically both are either positively or negatively correlated

    Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung Adenocarcinoma

    Get PDF
    corecore