843 research outputs found

    Anomaly Detection in Hyperspectral Imagery: Comparison of Methods Using Diurnal and Seasonal Data

    Get PDF
    The use of hyperspectral imaging is a fast growing field with many applications in the civilian, commercial and military sectors. Hyperspectral images are typically composed of many spectral bands in the visible and infrared regions of the electromagnetic spectrum and have the potential to deliver a great deal of information about a remotely sensed scene. One area of interest regarding hyperspectral images is anomaly detection, or the ability to find spectral outliers within a complex background in a scene with no a priori information about the scene or its specific contents. Anomaly detectors typically operate by creating a statistical background model of a hyperspectral image and measuring anomalies as image pixels that do not conform properly to that given model. In this study we compare the performance over diurnal and seasonal changes for several different anomaly detection methods found in the literature and a new anomaly detector that we refer to as the fuzzy cluster-based anomaly detector. Here we also compare the performance of several anomaly-based change detection algorithms. Our results indicate that all anomaly detectors tested in this experimentation exhibit strong performance under optimum illumination and environmental conditions. However, our results point toward a significant performance advantage for cluster-based anomaly detectors in the presence of adverse environmental conditions

    Matched filter stochastic background characterization for hyperspectral target detection

    Get PDF
    Algorithms exploiting hyperspectral imagery for target detection have continually evolved to provide improved detection results. Adaptive matched filters, which may be derived in many different scientific fields, can be used to locate spectral targets by modeling scene background as either structured geometric) with a set of endmembers (basis vectors) or as unstructured stochastic) with a covariance matrix. In unstructured background research, various methods of calculating the background covariance matrix have been developed, each involving either the removal of target signatures from the background model or the segmenting of image data into spatial or spectral subsets. The objective of these methods is to derive a background which matches the source of mixture interference for the detection of sub pixel targets, or matches the source of false alarms in the scene for the detection of fully resolved targets. In addition, these techniques increase the multivariate normality of the data from which the background is characterized, thus increasing adherence to the normality assumption inherent in the matched filter and ultimately improving target detection results. Such techniques for improved background characterization are widely practiced but not well documented or compared. This thesis will establish a strong theoretical foundation, describing the necessary preprocessing of hyperspectral imagery, deriving the spectral matched filter, and capturing current methods of unstructured background characterization. The extensive experimentation will allow for a comparative evaluation of several current unstructured background characterization methods as well as some new methods which improve stochastic modeling of the background. The results will show that consistent improvements over the scene-wide statistics can be achieved through spatial or spectral subsetting, and analysis of the results provides insight into the tradespaces of matching the interference, background multivariate normality and target exclusion for these techniques

    Matched Filter Stochastic Background Characterization for Hyperspectral Target Detection

    Get PDF
    Algorithms exploiting hyperspectral imagery for target detection have continually evolved to provide improved detection results. Adaptive matched filters can be used to locate spectral targets by modeling scene background as either structured (geometric) with a set of endmembers (basis vectors) or as unstructured (stochastic) with a covariance or correlation matrix. These matrices are often calculated using all available pixels in a data set. In unstructured background research, various techniques for improving upon scene-wide methods have been developed, each involving either the removal of target signatures from the background model or the segmentation of image data into spatial or spectral subsets. Each of these methods increase the detection signal-to-background ratio (SBR) and the multivariate normality (MVN) of the data from which background statistics are calculated, thus increasing separation between target and non-target species in the detection statistic and ultimately improving thresholded target detection results. Such techniques for improved background characterization are widely practiced but not well documented or compared. This paper provides a review and comparison of methods in target exclusion, spatial subsetting and spectral pre-clustering, and introduces a new technique which combines these methods. The analysis provides insight into the merit of employing unstructured background characterization techniques, as well as limitations for their practical application

    Improving Hyperspectral Subpixel Target Detection Using Hybrid Detection Space

    Full text link
    A Hyper-Spectral Image (HSI) has high spectral and low spatial resolution. As a result, most targets exist as subpixels, which pose challenges in target detection. Moreover, limitation of target and background samples always hinders the target detection performance. In this thesis, a hybrid method for subpixel target detection of an HSI using minimal prior knowledge is developed. The Matched Filter (MF) and Adaptive Cosine Estimator (ACE) are two popular algorithms in HSI target detection. They have different advantages in differentiating target from background. In the proposed method, the scores of MF and ACE algorithms are used to construct a hybrid detection space. First, some high abundance target spectra are randomly picked from the scene to perform initial detection to determine the target and background subsets. Then, the reference target spectrum and background covariance matrix are improved iteratively, using the hybrid detection space. As the iterations continue, the reference target spectrum gets closer and closer to the central line that connects the centers of target and background and resulting in noticeable improvement in target detection. Two synthetic datasets and two real datasets are used in the experiments. The results are evaluated based on the mean detection rate, Receiver Operating Characteristic (ROC) curve and observation of the detection results. Compared to traditional MF and ACE algorithms with Reed-Xiaoli Detector (RXD) background covariance matrix estimation, the new method shows much better performance on all four datasets. This method can be applied in environmental monitoring, mineral detection, as well as oceanography and forestry reconnaissance to search for extremely small target distribution in a large scene

    Fast and Accurate Retrieval of Methane Concentration From Imaging Spectrometer Data Using Sparsity Prior

    Get PDF
    The strong radiative forcing by atmospheric methane has stimulated interest in identifying natural and anthropogenic sources of this potent greenhouse gas. Point sources are important targets for quantification, and anthropogenic targets have the potential for emissions reduction. Methane point-source plume detection and concentration retrieval have been previously demonstrated using data from the Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG). Current quantitative methods have tradeoffs between computational requirements and retrieval accuracy, creating obstacles for processing real-time data or large data sets from flight campaigns. We present a new computationally efficient algorithm that applies sparsity and an albedo correction to matched the filter retrieval of trace gas concentration path length. The new algorithm was tested using the AVIRIS-NG data acquired over several point-source plumes in Ahmedabad, India. The algorithm was validated using the simulated AVIRIS-NG data, including synthetic plumes of known methane concentration. Sparsity and albedo correction together reduced the root-mean-squared error of retrieved methane concentration-path length enhancement by 60.7% compared with a previous robust matched filter method. Background noise was reduced by a factor of 2.64. The new algorithm was able to process the entire 300 flight line 2016 AVIRIS-NG India campaign in just over 8 h on a desktop computer with GPU acceleration

    Advanced imaging and data mining technologies for medical and food safety applications

    Get PDF
    As one of the most fast-developing research areas, biological imaging and image analysis receive more and more attentions, and have been already widely applied in many scientific fields including medical diagnosis and food safety inspection. To further investigate such a very interesting area, this research is mainly focused on advanced imaging and pattern recognition technologies in both medical and food safety applications, which include 1) noise reduction of ultra-low-dose multi-slice helical CT imaging for early lung cancer screening, and 2) automated discrimination between walnut shell and meat under hyperspectral florescence imaging. In the medical imaging and diagnosis area, because X-ray computed tomography (CT) has been applied to screen large populations for early lung cancer detection during the last decade, more and more attentions have been paid to studying low-dose, even ultra-low-dose X-ray CTs. However, reducing CT radiation exposure inevitably increases the noise level in the sinogram, thereby degrading the quality of reconstructed CT images. Thus, how to reduce the noise levels in the low-dose CT images becomes a meaningful topic. In this research, a nonparametric smoothing method with block based thin plate smoothing splines and the roughness penalty was introduced to restore the ultra-low-dose helical CT raw data, which was acquired under 120 kVp / 10 mAs protocol. The objective thorax image quality evaluation was first conducted to assess the image quality and noise level of proposed method. A web-based subjective evaluation system was also built for the total of 23 radiologists to compare proposed approach with traditional sinogram restoration method. Both objective and subjective evaluation studies showed the effectiveness of proposed thin-plate based nonparametric regression method in sinogram restoration of multi-slice helical ultra-low-dose CT. In food quality inspection area, automated discrimination between walnut shell and meat has become an imperative task in the walnut postharvest processing industry in the U.S. This research developed two hyperspectral fluorescence imaging based approaches, which were capable of differentiating walnut small shell fragments from meat. Firstly, a principal component analysis (PCA) and Gaussian mixture model (PCA-GMM)-based Bayesian classification method was introduced. PCA was used to extract features, and then the optimal number of components in PCA was selected by a cross-validation technique. The PCA-GMM-based Bayesian classifier was further applied to differentiate the walnut shell and meat according to the class-conditional probability and the prior estimated by the Gaussian mixture model. The experimental results showed the effectiveness of this PCA-GMM approach, and an overall 98.2% recognition rate was achieved. Secondly, Gaussian-kernel based Support Vector Machine (SVM) was presented for the walnut shell and meat discrimination in the hyperspectral florescence imagery. SVM was applied to seek an optimal low to high dimensional mapping such that the nonlinear separable input data in the original input data space became separable on the mapped high dimensional space, and hence fulfilled the classification between walnut shell and meat. An overall recognition rate of 98.7% was achieved by this method. Although the hyperspectral fluorescence imaging is capable of differentiating between walnut shell and meat, one persistent problem is how to deal with huge amount of data acquired by the hyperspectral imaging system, and hence improve the efficiency of application system. To solve this problem, an Independent Component Analysis with k-Nearest Neighbor Classifier (ICA-kNN) approach was presented in this research to reduce the data redundancy while not sacrifice the classification performance too much. An overall 90.6% detection rate was achieved given 10 optimal wavelengths, which constituted only 13% of the total acquired hyperspectral image data. In order to further evaluate the proposed method, the classification results of the ICA-kNN approach were also compared to the kNN classifier method alone. The experimental results showed that the ICA-kNN method with fewer wavelengths had the same performance as the kNN classifier alone using information from all 79 wavelengths. This demonstrated the effectiveness of the proposed ICA-kNN method for the hyperspectral band selection in the walnut shell and meat classification

    Fast and Accurate Retrieval of Methane Concentration from Imaging Spectrometer Data Using Sparsity Prior

    Get PDF
    The strong radiative forcing by atmospheric methane has stimulated interest in identifying natural and anthropogenic sources of this potent greenhouse gas. Point sources are important targets for quantification, and anthropogenic targets have potential for emissions reduction. Methane point source plume detection and concentration retrieval have been previously demonstrated using data from the Airborne Visible InfraRed Imaging Spectrometer Next Generation (AVIRIS-NG). Current quantitative methods have tradeoffs between computational requirements and retrieval accuracy, creating obstacles for processing real-time data or large datasets from flight campaigns. We present a new computationally efficient algorithm that applies sparsity and an albedo correction to matched filter retrieval of trace gas concentration-pathlength. The new algorithm was tested using AVIRIS-NG data acquired over several point source plumes in Ahmedabad, India. The algorithm was validated using simulated AVIRIS-NG data including synthetic plumes of known methane concentration. Sparsity and albedo correction together reduced the root mean squared error of retrieved methane concentration-pathlength enhancement by 60.7% compared with a previous robust matched filter method. Background noise was reduced by a factor of 2.64. The new algorithm was able to process the entire 300 flightline 2016 AVIRIS-NG India campaign in just over 8 hours on a desktop computer with GPU acceleration.Comment: 13 pages, 11 figure
    corecore