939 research outputs found

    Computing the common zeros of two bivariate functions via Bezout resultants

    Get PDF
    The common zeros of two bivariate functions can be computed by finding the common zeros of their polynomial interpolants expressed in a tensor Chebyshev basis. From here we develop a bivariate rootfinding algorithm based on the hidden variable resultant method and B�ezout matrices with polynomial entries. Using techniques including domain subdivision, B�ezoutian regularization and local refinement we are able to reliably and accurately compute the simple common zeros of two smooth functions with polynomial interpolants of very high degree (�≥\ge 1000). We analyze the resultant method and its conditioning by noting that the B�ezout matrices are matrix polynomials. Our robust algorithm is implemented in the roots command in Chebfun2, a software package written in object-oriented MATLAB for computing with bivariate functions

    The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions

    Get PDF
    Fundamental global similarity solutions of the standard form u_\g(x,t)=t^{-\a_\g} f_\g(y), with the rescaled variable y= x/{t^{\b_\g}}, \b_\g= \frac {1-n \a_\g}{10}, where \a_\g>0 are real nonlinear eigenvalues (\g is a multiindex in R^N) of the tenth-order thin film equation (TFE-10) u_{t} = \nabla \cdot(|u|^{n} \n \D^4 u) in R^N \times R_+, n>0, are studied. The present paper continues the study began by the authors in the previous paper P. Alvarez-Caudevilla, J.D.Evans, and V.A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, No. 4, Vol. 10 (2013), 1759-1790. Thus, the following questions are also under scrutiny: (I) Further study of the limit n \to 0, where the behaviour of finite interfaces and solutions as y \to infinity are described. In particular, for N=1, the interfaces are shown to diverge as follows: |x_0(t)| \sim 10 \left( \frac{1}{n}\sec\left( \frac{4\pi}{9} \right) \right)^{\frac 9{10}} t^{\frac 1{10}} \to \infty as n \to 0^+. (II) For a fixed n \in (0, \frac 98), oscillatory structures of solutions near interfaces. (III) Again, for a fixed n \in (0, \frac 98), global structures of some nonlinear eigenfunctions \{f_\g\}_{|\g| \ge 0} by a combination of numerical and analytical methods

    Homogeneous Second-Order Descent Framework: A Fast Alternative to Newton-Type Methods

    Full text link
    This paper proposes a homogeneous second-order descent framework (HSODF) for nonconvex and convex optimization based on the generalized homogeneous model (GHM). In comparison to the Newton steps, the GHM can be solved by extremal symmetric eigenvalue procedures and thus grant an advantage in ill-conditioned problems. Moreover, GHM extends the ordinary homogeneous model (OHM) to allow adaptiveness in the construction of the aggregated matrix. Consequently, HSODF is able to recover some well-known second-order methods, such as trust-region methods and gradient regularized methods, while maintaining comparable iteration complexity bounds. We also study two specific realizations of HSODF. One is adaptive HSODM, which has a parameter-free O(ϵ−3/2)O(\epsilon^{-3/2}) global complexity bound for nonconvex second-order Lipschitz continuous objective functions. The other one is homotopy HSODM, which is proven to have a global linear rate of convergence without strong convexity. The efficiency of our approach to ill-conditioned and high-dimensional problems is justified by some preliminary numerical results.Comment: improved writin

    Spectral Invariants of Operators of Dirac Type on Partitioned Manifolds

    Full text link
    We review the concepts of the index of a Fredholm operator, the spectral flow of a curve of self-adjoint Fredholm operators, the Maslov index of a curve of Lagrangian subspaces in symplectic Hilbert space, and the eta invariant of operators of Dirac type on closed manifolds and manifolds with boundary. We emphasize various (occasionally overlooked) aspects of rigorous definitions and explain the quite different stability properties. Moreover, we utilize the heat equation approach in various settings and show how these topological and spectral invariants are mutually related in the study of additivity and nonadditivity properties on partitioned manifolds.Comment: 131 pages, 9 figure
    • …
    corecore