5,869 research outputs found

    On the Ground Validation of Online Diagnosis with Twitter and Medical Records

    Full text link
    Social media has been considered as a data source for tracking disease. However, most analyses are based on models that prioritize strong correlation with population-level disease rates over determining whether or not specific individual users are actually sick. Taking a different approach, we develop a novel system for social-media based disease detection at the individual level using a sample of professionally diagnosed individuals. Specifically, we develop a system for making an accurate influenza diagnosis based on an individual's publicly available Twitter data. We find that about half (17/35 = 48.57%) of the users in our sample that were sick explicitly discuss their disease on Twitter. By developing a meta classifier that combines text analysis, anomaly detection, and social network analysis, we are able to diagnose an individual with greater than 99% accuracy even if she does not discuss her health.Comment: Presented at of WWW2014. WWW'14 Companion, April 7-11, 2014, Seoul, Kore

    On the Ground Validation of Online Diagnosis with Twitter and Medical Records

    Full text link
    Social media has been considered as a data source for tracking disease. However, most analyses are based on models that prioritize strong correlation with population-level disease rates over determining whether or not specific individual users are actually sick. Taking a different approach, we develop a novel system for social-media based disease detection at the individual level using a sample of professionally diagnosed individuals. Specifically, we develop a system for making an accurate influenza diagnosis based on an individual's publicly available Twitter data. We find that about half (17/35 = 48.57%) of the users in our sample that were sick explicitly discuss their disease on Twitter. By developing a meta classifier that combines text analysis, anomaly detection, and social network analysis, we are able to diagnose an individual with greater than 99% accuracy even if she does not discuss her health.Comment: Presented at of WWW2014. WWW'14 Companion, April 7-11, 2014, Seoul, Kore

    Linking social media, medical literature, and clinical notes using deep learning.

    Get PDF
    Researchers analyze data, information, and knowledge through many sources, formats, and methods. The dominant data format includes text and images. In the healthcare industry, professionals generate a large quantity of unstructured data. The complexity of this data and the lack of computational power causes delays in analysis. However, with emerging deep learning algorithms and access to computational powers such as graphics processing unit (GPU) and tensor processing units (TPUs), processing text and images is becoming more accessible. Deep learning algorithms achieve remarkable results in natural language processing (NLP) and computer vision. In this study, we focus on NLP in the healthcare industry and collect data not only from electronic medical records (EMRs) but also medical literature and social media. We propose a framework for linking social media, medical literature, and EMRs clinical notes using deep learning algorithms. Connecting data sources requires defining a link between them, and our key is finding concepts in the medical text. The National Library of Medicine (NLM) introduces a Unified Medical Language System (UMLS) and we use this system as the foundation of our own system. We recognize social media’s dynamic nature and apply supervised and semi-supervised methodologies to generate concepts. Named entity recognition (NER) allows efficient extraction of information, or entities, from medical literature, and we extend the model to process the EMRs’ clinical notes via transfer learning. The results include an integrated, end-to-end, web-based system solution that unifies social media, literature, and clinical notes, and improves access to medical knowledge for the public and experts

    Social networks : the future for health care delivery

    Get PDF
    With the rapid growth of online social networking for health, health care systems are experiencing an inescapable increase in complexity. This is not necessarily a drawback; self-organising, adaptive networks could become central to future health care delivery. This paper considers whether social networks composed of patients and their social circles can compete with, or complement, professional networks in assembling health-related information of value for improving health and health care. Using the framework of analysis of a two-sided network – patients and providers – with multiple platforms for interaction, we argue that the structure and dynamics of such a network has implications for future health care. Patients are using social networking to access and contribute health information. Among those living with chronic illness and disability and engaging with social networks, there is considerable expertise in assessing, combining and exploiting information. Social networking is providing a new landscape for patients to assemble health information, relatively free from the constraints of traditional health care. However, health information from social networks currently complements traditional sources rather than substituting for them. Networking among health care provider organisations is enabling greater exploitation of health information for health care planning. The platforms of interaction are also changing. Patient-doctor encounters are now more permeable to influence from social networks and professional networks. Diffuse and temporary platforms of interaction enable discourse between patients and professionals, and include platforms controlled by patients. We argue that social networking has the potential to change patterns of health inequalities and access to health care, alter the stability of health care provision and lead to a reformulation of the role of health professionals. Further research is needed to understand how network structure combined with its dynamics will affect the flow of information and potentially the allocation of health care resources

    Ethical Challenges in Data-Driven Dialogue Systems

    Full text link
    The use of dialogue systems as a medium for human-machine interaction is an increasingly prevalent paradigm. A growing number of dialogue systems use conversation strategies that are learned from large datasets. There are well documented instances where interactions with these system have resulted in biased or even offensive conversations due to the data-driven training process. Here, we highlight potential ethical issues that arise in dialogue systems research, including: implicit biases in data-driven systems, the rise of adversarial examples, potential sources of privacy violations, safety concerns, special considerations for reinforcement learning systems, and reproducibility concerns. We also suggest areas stemming from these issues that deserve further investigation. Through this initial survey, we hope to spur research leading to robust, safe, and ethically sound dialogue systems.Comment: In Submission to the AAAI/ACM conference on Artificial Intelligence, Ethics, and Societ

    Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature

    Get PDF
    The booming adoption of Artificial Intelligence (AI) likewise poses benefits and challenges. In this paper, we particularly focus on the bright side of AI and its promising potential to face our society’s grand challenges. Given this potential, different studies have already conducted valuable work by conceptualizing specific facets of AI and sustainability, including reviews on AI and Information Systems (IS) research or AI and business values. Nonetheless, there is still little holistic knowledge at the intersection of IS, AI, and sustainability. This is problematic because the IS discipline, with its socio-technical nature, has the ability to integrate perspectives beyond the currently dominant technological one as well as can advance both theory and the development of purposeful artifacts. To bridge this gap, we disclose how IS research currently makes use of AI to boost sustainable development. Based on a systematically collected corpus of 95 articles, we examine sustainability goals, data inputs, technologies and algorithms, and evaluation approaches that coin the current state of the art within the IS discipline. This comprehensive overview enables us to make more informed investments (e.g., policy and practice) as well as to discuss blind spots and possible directions for future research

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    The Convergence of Human and Artificial Intelligence on Clinical Care - Part I

    Get PDF
    This edited book contains twelve studies, large and pilots, in five main categories: (i) adaptive imputation to increase the density of clinical data for improving downstream modeling; (ii) machine-learning-empowered diagnosis models; (iii) machine learning models for outcome prediction; (iv) innovative use of AI to improve our understanding of the public view; and (v) understanding of the attitude of providers in trusting insights from AI for complex cases. This collection is an excellent example of how technology can add value in healthcare settings and hints at some of the pressing challenges in the field. Artificial intelligence is gradually becoming a go-to technology in clinical care; therefore, it is important to work collaboratively and to shift from performance-driven outcomes to risk-sensitive model optimization, improved transparency, and better patient representation, to ensure more equitable healthcare for all
    • 

    corecore