14,442 research outputs found

    On the Global Convergence of Derivative Free Methods for Unconstrained Optimization.

    Get PDF
    In this paper, starting from the study of the common elements that some globally convergent direct search methods share, a general convergence theory is established for unconstrained minimization methods employing only function values. The introduced convergence conditions are useful for developing and analyzing new derivative-free algorithms with guaranteed global convergence. As examples, we describe three new algorithms which combine pattern and line search approaches

    Globally convergent hybridization of particle swarm optimization using line search-based derivative-free techniques

    Get PDF
    The hybrid use of exact and heuristic derivative-free methods for global unconstrained optimization problems is presented. Many real-world problems are modeled by computationally expensive functions, such as problems in simulationbased design of complex engineering systems. Objective-function values are often provided by systems of partial differential equations, solved by computationally expensive black-box tools. The objective-function is likely noisy and its derivatives are not provided. On the one hand, the use of exact optimization methods might be computationally too expensive, especially if asymptotic convergence properties are sought. On the other hand, heuristic methods do not guarantee the stationarity of their final solutions. Nevertheless, heuristic methods are usually able to provide an approximate solution at a reasonable computational cost, and have been widely applied to real-world simulation-based design optimization problems. Herein, an overall hybrid algorithm combining the appealing properties of both exact and heuristic methods is discussed, with focus on Particle Swarm Optimization (PSO) and line search-based derivative-free algorithms. The theoretical properties of the hybrid algorithm are detailed, in terms of limit points stationarity. Numerical results are presented for a test function and for two real-world optimization problems in ship hydrodynamics.The hybrid use of exact and heuristic derivative-free methods for global unconstrained optimization problems is presented. Many real-world problems are modeled by computationally expensive functions, such as problems in simulationbased design of complex engineering systems. Objective-function values are often provided by systems of partial differential equations, solved by computationally expensive black-box tools. The objective-function is likely noisy and its derivatives are often not available. On the one hand, the use of exact optimization methods might be computationally too expensive, especially if asymptotic convergence properties are sought. On the other hand, heuristic methods do not guarantee the stationarity of their final solutions. Nevertheless, heuristic methods are usually able to provide an approximate solution at a reasonable computational cost, and have been widely applied to real-world simulation-based design optimization problems. Herein, an overall hybrid algorithm combining the appealing properties of both exact and heuristic methods is discussed, with focus on Particle Swarm Optimization (PSO) and line search-based derivative-free algorithms. The theoretical properties of the hybrid algorithm are detailed, in terms of limit points stationarity. Numerical results are presented for a specific test function and for two real-world optimization problems in ship hydrodynamics
    • …
    corecore