116 research outputs found

    Generating High-Order Threshold Functions with Multiple Thresholds

    Full text link
    In this paper, we consider situations in which a given logical function is realized by a multithreshold threshold function. In such situations, constant functions can be easily obtained from multithreshold threshold functions, and therefore, we can show that it becomes possible to optimize a class of high-order neural networks. We begin by proposing a generating method for threshold functions in which we use a vector that determines the boundary between the linearly separable function and the high-order threshold function. By applying this method to high-order threshold functions, we show that functions with the same weight as, but a different threshold than, a threshold function generated by the generation process can be easily obtained. We also show that the order of the entire network can be extended while maintaining the structure of given functions.Comment: 7 page

    Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification

    Get PDF
    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or non-vessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and continuous two-dimensional Morlet wavelet transform responses taken at multiple scales. The Morlet wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces and compare its performance with the linear minimum squared error classifier. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE and STARE databases of manually labeled non-mydriatic images. On the DRIVE database, it achieves an area under the receiver operating characteristic (ROC) curve of 0.9598, being slightly superior than that presented by the method of Staal et al.Comment: 9 pages, 7 figures and 1 table. Accepted for publication in IEEE Trans Med Imag; added copyright notic

    Extreme Entropy Machines: Robust information theoretic classification

    Full text link
    Most of the existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach this problem in a more information theoretic way by investigating applicability of entropy measures as a classification model objective function. We focus on quadratic Renyi's entropy and connected Cauchy-Schwarz Divergence which leads to the construction of Extreme Entropy Machines (EEM). The main contribution of this paper is proposing a model based on the information theoretic concepts which on the one hand shows new, entropic perspective on known linear classifiers and on the other leads to a construction of very robust method competetitive with the state of the art non-information theoretic ones (including Support Vector Machines and Extreme Learning Machines). Evaluation on numerous problems spanning from small, simple ones from UCI repository to the large (hundreads of thousands of samples) extremely unbalanced (up to 100:1 classes' ratios) datasets shows wide applicability of the EEM in real life problems and that it scales well

    Extreme entropy machines : robust information theoretic classification

    Get PDF
    Most existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach the classification problem by applying entropy measures as a model objective function. We focus on quadratic Renyi’s entropy and connected Cauchy-Schwarz Divergence which leads to the construction of extreme entropy machines (EEM). The main contribution of this paper is proposing a model based on the information theoretic concepts which on the one hand shows new, entropic perspective on known linear classifiers and on the other leads to a construction of very robust method competitive with the state of the art noninformation theoretic ones (including Support Vector Machines and Extreme Learning Machines). Evaluation on numerous problems spanning from small, simple ones from UCI repository to the large (hundreds of thousands of samples) extremely unbalanced (up to 100:1 classes’ ratios) datasets shows wide applicability of the EEM in real-life problems. Furthermore, it scales better than all considered competitive methods

    Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms

    Get PDF
    As an alternative to classical techniques, the problem of image segmentation has also been handled through evolutionary methods. Recently, several algorithms based on evolutionary principles have been successfully applied to image segmentation with interesting performances. However, most of them maintain two important limitations: (1) they frequently obtain suboptimal results (misclassifications) as a consequence of an inappropriate balance between exploration and exploitation in their search strategies; (2) the number of classes is fixed and known in advance. This paper presents an algorithm for the automatic selection of pixel classes for image segmentation. The proposed method combines a novel evolutionary method with the definition of a new objective function that appropriately evaluates the segmentation quality with respect to the number of classes. The new evolutionary algorithm, called Locust Search (LS), is based on the behavior of swarms of locusts. Different to the most of existent evolutionary algorithms, it explicitly avoids the concentration of individuals in the best positions, avoiding critical flaws such as the premature convergence to suboptimal solutions and the limited exploration-exploitation balance. Experimental tests over several benchmark functions and images validate the efficiency of the proposed technique with regard to accuracy and robustness

    Design of Binary Logic Systems Using Mechanical Elements

    Get PDF
    Mechanical Engineerin
    corecore