5,732 research outputs found

    Edge-Fault Tolerance of Hypercube-like Networks

    Full text link
    This paper considers a kind of generalized measure λs(h)\lambda_s^{(h)} of fault tolerance in a hypercube-like graph GnG_n which contain several well-known interconnection networks such as hypercubes, varietal hypercubes, twisted cubes, crossed cubes and M\"obius cubes, and proves λs(h)(Gn)=2h(nh)\lambda_s^{(h)}(G_n)= 2^h(n-h) for any hh with 0hn10\leqslant h\leqslant n-1 by the induction on nn and a new technique. This result shows that at least 2h(nh)2^h(n-h) edges of GnG_n have to be removed to get a disconnected graph that contains no vertices of degree less than hh. Compared with previous results, this result enhances fault-tolerant ability of the above-mentioned networks theoretically

    On Weingarten transformations of hyperbolic nets

    Full text link
    Weingarten transformations which, by definition, preserve the asymptotic lines on smooth surfaces have been studied extensively in classical differential geometry and also play an important role in connection with the modern geometric theory of integrable systems. Their natural discrete analogues have been investigated in great detail in the area of (integrable) discrete differential geometry and can be traced back at least to the early 1950s. Here, we propose a canonical analogue of (discrete) Weingarten transformations for hyperbolic nets, that is, C^1-surfaces which constitute hybrids of smooth and discrete surfaces "parametrized" in terms of asymptotic coordinates. We prove the existence of Weingarten pairs and analyse their geometric and algebraic properties.Comment: 41 pages, 30 figure

    Constructing Two Edge-Disjoint Hamiltonian Cycles in Locally Twisted Cubes

    Full text link
    The nn-dimensional hypercube network QnQ_n is one of the most popular interconnection networks since it has simple structure and is easy to implement. The nn-dimensional locally twisted cube, denoted by LTQnLTQ_n, an important variation of the hypercube, has the same number of nodes and the same number of connections per node as QnQ_n. One advantage of LTQnLTQ_n is that the diameter is only about half of the diameter of QnQ_n. Recently, some interesting properties of LTQnLTQ_n were investigated. In this paper, we construct two edge-disjoint Hamiltonian cycles in the locally twisted cube LTQnLTQ_n, for any integer n4n\geqslant 4. The presence of two edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the locally twisted cube.Comment: 7 pages, 4 figure

    Entanglement Entropy From Tensor Network States for Stabilizer Codes

    Full text link
    In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of 3D stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground-states for some special cuts. In particular, we work out the examples of the 3D toric code, the X-cube model and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: for these, the constructed TNS is the singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground state degeneracy. Moreover, the transfer matrices of these TNS can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground state degeneracy.Comment: 33+9 pages. 16+3 figure

    The crossing number of locally twisted cubes

    Full text link
    The {\it crossing number} of a graph GG is the minimum number of pairwise intersections of edges in a drawing of GG. Motivated by the recent work [Faria, L., Figueiredo, C.M.H. de, Sykora, O., Vrt'o, I.: An improved upper bound on the crossing number of the hypercube. J. Graph Theory {\bf 59}, 145--161 (2008)] which solves the upper bound conjecture on the crossing number of nn-dimensional hypercube proposed by Erd\H{o}s and Guy, we give upper and lower bounds of the crossing number of locally twisted cube, which is one of variants of hypercube.Comment: 17 pages, 12 figure

    Entanglement entropy of (3+1)D topological orders with excitations

    Get PDF
    Excitations in (3+1)D topologically ordered phases have very rich structures. (3+1)D topological phases support both point-like and string-like excitations, and in particular the loop (closed string) excitations may admit knotted and linked structures. In this work, we ask the question how different types of topological excitations contribute to the entanglement entropy, or alternatively, can we use the entanglement entropy to detect the structure of excitations, and further obtain the information of the underlying topological orders? We are mainly interested in (3+1)D topological orders that can be realized in Dijkgraaf-Witten gauge theories, which are labeled by a finite group GG and its group 4-cocycle ωH4[G;U(1)]\omega\in\mathcal{H}^4[G;U(1)] up to group automorphisms. We find that each topological excitation contributes a universal constant lndi\ln d_i to the entanglement entropy, where did_i is the quantum dimension that depends on both the structure of the excitation and the data (G,ω)(G,\,\omega). The entanglement entropy of the excitations of the linked/unlinked topology can capture different information of the DW theory (G,ω)(G,\,\omega). In particular, the entanglement entropy introduced by Hopf-link loop excitations can distinguish certain group 4-cocycles ω\omega from the others.Comment: 12 pages, 4 figures; v2: minor changes, published versio

    Strong planar subsystem symmetry-protected topological phases and their dual fracton orders

    Get PDF
    We classify subsystem symmetry-protected topological (SSPT) phases in 3 + 1 dimensions (3 + 1D) protected by planar subsystem symmetries: short-range entangled phases which are dual to long-range entangled Abelian fracton topological orders via a generalized “gauging” duality. We distinguish between weak SSPTs, which can be constructed by stacking 2 + 1D SPTs, and strong SSPTs, which cannot. We identify signatures of strong phases, and show by explicit construction that such phases exist. A classification of strong phases is presented for an arbitrary finite Abelian group. Finally, we show that fracton orders realizable via p-string condensation are dual to weak SSPTs, while those dual to strong SSPTs exhibit statistical interactions prohibiting such a realization
    corecore