2,010 research outputs found

    On the Generalization of Fused Systems in Voice Presentation Attack Detection

    Get PDF
    This paper describes presentation attack detection systems developed for the Automatic Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof 2017). The submitted systems, using calibration and score fusion techniques, combine different sub-systems (up to 18), which are based on eight state of the art features and rely on Gaussian mixture models and feed-forward neural network classifiers. The systems achieved the top five performances in the competition. We present the proposed systems and analyze the calibration and fusion strategies employed. To assess the systems' generalization capacity, we evaluated it on an unrelated larger database recorded in Portuguese language, which is different from the English language used in the competition. These extended evaluation results show that the fusion-based system, although successful in the scope of the evaluation, lacks the ability to accurately discriminate genuine data from attacks in unknown conditions, which raises the question on how to assess the generalization ability of attack detection systems in practical application scenarios

    Two-Factor Biometric Identity Verification System for the Human-Machine System Integrated Deep Learning Model

    Get PDF
    The Human-Machine Identity Verification System based on Deep Learning offers a robust and automated approach to identity verification, leveraging the power of deep learning algorithms to enhance accuracy and security. This paper focused on the biometric-based authentical scheme with Biometric Recognition for the Huma-Machinary Identification System. The proposed model is stated as the Two-Factor Biometric Authentication Deep Learning (TBAuthDL). The proposed TBAuthDL model uses the iris and fingerprint biometric data for authentication. TBAuthDL uses the Weighted Hashing Cryptographic (WHC) model for the data security. The TBAuthDL model computes the hashing factors and biometric details of the person with WHC and updates to the TBAuthDL. Upon the verification of the details of the assessment is verified in the Human-Machinary identity. The simulation analysis of TBAuthDL model achieves a higher accuracy of 99% with a minimal error rate of 1% which is significantly higher than the existing techniques. The performance also minimizes the computation and processing time with reduced complexity

    Face Anti-Spoofing and Deep Learning Based Unsupervised Image Recognition Systems

    Get PDF
    One of the main problems of a supervised deep learning approach is that it requires large amounts of labeled training data, which are not always easily available. This PhD dissertation addresses the above-mentioned problem by using a novel unsupervised deep learning face verification system called UFace, that does not require labeled training data as it automatically, in an unsupervised way, generates training data from even a relatively small size of data. The method starts by selecting, in unsupervised way, k-most similar and k-most dissimilar images for a given face image. Moreover, this PhD dissertation proposes a new loss function to make it work with the proposed method. Specifically, the method computes loss function k times for both similar and dissimilar images for each input image in order to increase the discriminative power of feature vectors to learn the inter-class and intra-class face variability. The training is carried out based on the similar and dissimilar input face image vector rather than the same training input face image vector in order to extract face embeddings. The UFace is evaluated on four benchmark face verification datasets: Labeled Faces in the Wild dataset (LFW), YouTube Faces dataset (YTF), Cross-age LFW (CALFW) and Celebrities in Frontal Profile in the Wild (CFP-FP) datasets. The results show that we gain an accuracy of 99.40\%, 96.04\%, 95.12\% and 97.89\% respectively. The achieved results, despite being unsupervised, is on par to a similar but fully supervised methods. Another, related to face verification, area of research is on face anti-spoofing systems. State-of-the-art face anti-spoofing systems use either deep learning, or manually extracted image quality features. However, many of the existing image quality features used in face anti-spoofing systems are not well discriminating spoofed and genuine faces. Additionally, State-of-the-art face anti-spoofing systems that use deep learning approaches do not generalize well. Thus, to address the above problem, this PhD dissertation proposes hybrid face anti-spoofing system that considers the best from image quality feature and deep learning approaches. This work selects and proposes a set of seven novel no-reference image quality features measurement, that discriminate well between spoofed and genuine faces, to complement the deep learning approach. It then, proposes two approaches: In the first approach, the scores from the image quality features are fused with the deep learning classifier scores in a weighted fashion. The combined scores are used to determine whether a given input face image is genuine or spoofed. In the second approach, the image quality features are concatenated with the deep learning features. Then, the concatenated features vector is fed to the classifier to improve the performance and generalization of anti-spoofing system. Extensive evaluations are conducted to evaluate their performance on five benchmark face anti-spoofing datasets: Replay-Attack, CASIA-MFSD, MSU-MFSD, OULU-NPU and SiW. Experiments on these datasets show that it gives better results than several of the state-of-the-art anti-spoofing systems in many scenarios
    corecore