859 research outputs found

    On the Fourier Spectra of the Infinite Families of Quadratic APN Functions

    Get PDF
    It is well known that a quadratic function defined on a finite field of odd degree is almost bent (AB) if and only if it is almost perfect nonlinear (APN). For the even degree case there is no apparent relationship between the values in the Fourier spectrum of a function and the APN property. In this article we compute the Fourier spectrum of the new quadranomial family of APN functions. With this result, all known infinite families of APN functions now have their Fourier spectra and hence their nonlinearities computed.Comment: 12 pages, submitted to Adavances in the Mathematics of communicatio

    Multiphoton detachment of electrons from negative ions

    Get PDF
    A simple analytical solution for the problem of multiphoton detachment from negative ions by a linearly polarized laser field is found. It is valid in the wide range of intensities and frequencies of the field, from the perturbation theory to the tunneling regime, and is applicable to the excess-photon as well as near-threshold detachment. Practically, the formulae are valid when the number of photons is greater than two. They produce the total detachment rates, relative intensities of the excess-photon peaks, and photoelectron angular distributions for the hydrogen and halogen negative ions, in agreement with those obtained in other, more numerically involved calculations in both perturbative and non-perturbative regimes. Our approach explains the extreme sensitivity of the multiphoton detachment probability to the asymptotic behaviour of the bound-state wave function. Rapid oscillations in the angular dependence of the nn-photon detachment probability are shown to arise due to interference of the two classical trajectories which lead to the same final state after the electron emerges at the opposite sides of the atom when the field is close to maximal.Comment: 27 pages, Latex, and PostScript figures fig1.ps, fig2.ps, fig3.ps, accepted for publication in Phys. Rev.

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)F(x)D_a F(x)=F(x+a)-F(x), aG{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters

    Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model

    Get PDF
    The gravitational radiation emitted during the merger of a black hole with a neutron star is rather similar to the radiation from the merger of two black holes when the neutron star is not tidally disrupted. When tidal disruption occurs, gravitational waveforms can be broadly classified in two groups, depending on the spatial extent of the disrupted material. Extending previous work by some of us, here we present a phenomenological model for the gravitational waveform amplitude in the frequency domain encompassing the three possible outcomes of the merger: no tidal disruption, "mild" and "strong" tidal disruption. The model is calibrated to 134 general-relativistic numerical simulations of binaries where the black hole spin is either aligned or antialigned with the orbital angular momentum. All simulations were produced using the SACRA code and piecewise polytropic neutron star equations of state. The present model can be used to determine when black-hole binary waveforms are sufficient for gravitational-wave detection, to extract information on the equation of state from future gravitational-wave observations, to obtain more accurate estimates of black hole-neutron star merger event rates, and to determine the conditions under which these systems are plausible candidates as central engines of gamma-ray bursts, macronovae and kilonovae.Comment: 15 pages, 7 figures, 1 tabl
    corecore