1,732 research outputs found

    Statechart Slicing

    Get PDF
    The paper discusses how to reduce a statechart model by slicing. We start with the discussion of control dependencies and data dependencies in statecharts. The and-or dependence graph is introduced to represent control and data dependencies for statecharts. We show how to slice statecharts by using this dependence graph. Our slicing approach helps systems analysts and system designers in understanding system specifications, maintaining software systems, and reusing parts of systems models

    A probabilistic extension of UML statecharts: specification and verification

    Get PDF
    This paper is the extended technical report that corresponds to a published paper [14]. This paper introduces means to specify system randomness within UML statecharts, and to verify probabilistic temporal properties over such enhanced statecharts which we call probabilistic UML statecharts. To achieve this, we develop a general recipe to extend a statechart semantics with discrete probability distributions, resulting in Markov decision processes as semantic models. We apply this recipe to the requirements-level UML semantics of [8]. Properties of interest for probabilistic statecharts are expressed in PCTL, a probabilistic variant of CTL for processes that exhibit both non-determinism and probabilities. Verification is performed using the model checker Prism. A model checking example shows the feasibility of the suggested approach

    A Holistic Approach in Embedded System Development

    Full text link
    We present pState, a tool for developing "complex" embedded systems by integrating validation into the design process. The goal is to reduce validation time. To this end, qualitative and quantitative properties are specified in system models expressed as pCharts, an extended version of hierarchical state machines. These properties are specified in an intuitive way such that they can be written by engineers who are domain experts, without needing to be familiar with temporal logic. From the system model, executable code that preserves the verified properties is generated. The design is documented on the model and the documentation is passed as comments into the generated code. On the series of examples we illustrate how models and properties are specified using pState.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    On semantics and refinement of UML statecharts: a coalgebraic view

    Get PDF
    Statecharts was conceived as a visual formalism for the design of reactive systems. UML statecharts is an object-based variant of classical statecharts, incorporating several concepts different from the classical statecharts. This paper discusses a coalgebraic description of UML statecharts, directly derived from its operational semantics. In particular such an approach induces suitable notions of equivalence and (behavioral) refinement for statecharts. Finally, a few refinement laws are investigated to support verifiable stepwise system development with statecharts.(undefined

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design

    Capturing Assumptions while Designing a Verification Model for Embedded Systems

    Get PDF
    A formal proof of a system correctness typically holds under a number of assumptions. Leaving them implicit raises the chance of using the system in a context that violates some assumptions, which in return may invalidate the correctness proof. The goal of this paper is to show how combining informal and formal techniques in the process of modelling and formal verification helps capturing these assumptions. As we focus on embedded systems, the assumptions are about the control software, the system on which the software is running and the systemā€™s environment. We present them as a list written in natural language that supplements the formally verified embedded system model. These two together are a better argument for system correctness than each of these given separately

    Non-null Infinitesimal Micro-steps: a Metric Temporal Logic Approach

    Full text link
    Many systems include components interacting with each other that evolve with possibly very different speeds. To deal with this situation many formal models adopt the abstraction of "zero-time transitions", which do not consume time. These however have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis to introduce a notion of micro- and macro-steps in an extension of the TRIO metric temporal logic, called X-TRIO. We use X-TRIO to provide a formal semantics and an automated verification technique to Stateflow-like notations used in the design of flexible manufacturing systems.Comment: 20 pages, 2 figures, submitted to the conference "FORMATS: Formal Modelling and Analysis of Timed Systems" 201
    • ā€¦
    corecore