11,071 research outputs found

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Random induced subgraphs of Cayley graphs induced by transpositions

    Get PDF
    In this paper we study random induced subgraphs of Cayley graphs of the symmetric group induced by an arbitrary minimal generating set of transpositions. A random induced subgraph of this Cayley graph is obtained by selecting permutations with independent probability, λn\lambda_n. Our main result is that for any minimal generating set of transpositions, for probabilities λn=1+ϵnn1\lambda_n=\frac{1+\epsilon_n}{n-1} where n1/3+δϵn0n^{-{1/3}+\delta}\le \epsilon_n0, a random induced subgraph has a.s. a unique largest component of size (ϵn)1+ϵnn1n!\wp(\epsilon_n)\frac{1+\epsilon_n}{n-1}n!, where (ϵn)\wp(\epsilon_n) is the survival probability of a specific branching process.Comment: 18 pages, 1 figur

    Optimal bounds for disjoint Hamilton cycles in star graphs

    Get PDF
    In interconnection network topologies, the n-dimensional star graph Stn has n! vertices corresponding to permutations a (1) : : : a (n) of n symbols a1; : : : ; an and edges which exchange the positions of the rst symbol a (1) with any one of the other symbols. The star graph compares favorably with the familiar n-cube on degree, diameter and a number of other parameters. A desirable property which has not been fully evaluated in star graphs is the presence of multiple edge-disjoint Hamilton cycles which are important for fault-tolerance. The only known method for producing multiple edge-disjoint Hamilton cycles in Stn has been to label the edges in a certain way and then take images of a known base 2-labelled Hamilton cycle under di erent automorphisms that map labels consistently. However, optimal bounds for producing edge-disjoint Hamilton cycles in this way, and whether Hamilton decompositions can be produced, are not known for any Stn other than for the case of St5 which does provide a Hamilton decomposition. In this paper we show that, for all n, not more than '(n)=2, where ' is Euler's totient function, edge-disjoint Hamilton cycles can be produced by such automorphisms. Thus, for non-prime n, a Hamilton decomposition cannot be produced. We show that the '(n)=2 upper bound can be achieved for all even n. In particular, if n is a power of 2, Stn has a Hamilton decomposable spanning subgraph comprising more than half of the edges of Stn. Our results produce a better than twofold improvement on the known bounds for any kind of edge-disjoint Hamilton cycles in n-dimensional star graphs for general n

    Diameter of Cayley graphs of permutation groups generated by transposition trees

    Full text link
    Let Γ\Gamma be a Cayley graph of the permutation group generated by a transposition tree TT on nn vertices. In an oft-cited paper \cite{Akers:Krishnamurthy:1989} (see also \cite{Hahn:Sabidussi:1997}), it is shown that the diameter of the Cayley graph Γ\Gamma is bounded as \diam(\Gamma) \le \max_{\pi \in S_n}{c(\pi)-n+\sum_{i=1}^n \dist_T(i,\pi(i))}, where the maximization is over all permutations π\pi, c(π)c(\pi) denotes the number of cycles in π\pi, and \dist_T is the distance function in TT. In this work, we first assess the performance (the sharpness and strictness) of this upper bound. We show that the upper bound is sharp for all trees of maximum diameter and also for all trees of minimum diameter, and we exhibit some families of trees for which the bound is strict. We then show that for every nn, there exists a tree on nn vertices, such that the difference between the upper bound and the true diameter value is at least n4n-4. Observe that evaluating this upper bound requires on the order of n!n! (times a polynomial) computations. We provide an algorithm that obtains an estimate of the diameter, but which requires only on the order of (polynomial in) nn computations; furthermore, the value obtained by our algorithm is less than or equal to the previously known diameter upper bound. This result is possible because our algorithm works directly with the transposition tree on nn vertices and does not require examining any of the permutations (only the proof requires examining the permutations). For all families of trees examined so far, the value β\beta computed by our algorithm happens to also be an upper bound on the diameter, i.e. \diam(\Gamma) \le \beta \le \max_{\pi \in S_n}{c(\pi)-n+\sum_{i=1}^n \dist_T(i,\pi(i))}.Comment: This is an extension of arXiv:1106.535
    corecore