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In interconnection network topologies, the n-dimensional star graph Stn has n! vertices
corresponding to permutations aρ(1) . . . aρ(n) of n symbols a1, . . . , an and edges which

exchange the positions of the first symbol aρ(1) with any one of the other symbols. The

star graph compares favorably with the familiar n-cube on degree, diameter and a number
of other parameters. A desirable property which has not been fully evaluated in star

graphs is the presence of multiple edge-disjoint Hamilton cycles which are important for

fault-tolerance. The only known method for producing multiple edge-disjoint Hamilton
cycles in Stn has been to label the edges in a certain way and then take images of a

known base 2-labelled Hamilton cycle under different automorphisms that map labels

consistently. However, optimal bounds for producing edge-disjoint Hamilton cycles in
this way, and whether Hamilton decompositions can be produced, are not known for

any Stn other than for the case of St5 which does provide a Hamilton decomposition.
In this paper we show that, for all n, not more than ϕ(n)/2, where ϕ is Euler’s totient

function, edge-disjoint Hamilton cycles can be produced by such automorphisms. Thus,

for non-prime n, a Hamilton decomposition cannot be produced. We show that the
ϕ(n)/2 upper bound can be achieved for all even n. In particular, if n is a power of

2, Stn has a Hamilton decomposable spanning subgraph comprising more than half of

the edges of Stn. Our results produce a better than twofold improvement on the known
bounds for any kind of edge-disjoint Hamilton cycles in n-dimensional star graphs for

general n.
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1. Introduction

The n-dimensional star graph Stn [1] has n! vertices corresponding to permutations

aρ(1) . . . aρ(n) of n symbols a1, . . . , an and edges corresponding to applications of

one of the transpositions (aρ(1), aρ(2)), . . . , (aρ(1), aρ(n)). It connects n! vertices with

degree n − 1 and diameter b3(n − 1)/2c. By comparison the n-cube connects 2n

vertices with degree n and diameter n. The star graph also compares favorably

with the n-cube on other properties of symmetry and fault-tolerance. As such,

the star graph offers a cheaper alternative to the n-cube, as an interconnection
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topology, requiring less network hardware and incurring less communication delay.

Derivatives of the star network such as the incomplete star [8], hierarchical star

[10], (n, k)-star [4], arrangement star [3], and starcube [11] have been proposed

and their topological properties have been extensively studied and compared. A

property of the n-cube that has escaped such studies in all these other topologies

has been that of Hamilton decomposability. This property is important for fault

tolerance and broadcasting algorithms. Apart from an old result of [7], little was

known about Hamilton cycles in star graphs Stn of degree n-1 until fairly recently in

[6] where a Hamilton decomposition of St5 was produced and in [9] where ϕ(n)/10

disjoint Hamilton cycles were shown to be present in Stn for all n. Surprisingly, in

contrast to the n-cube, the method used in both [6] and [9] generates edge-disjoint

Hamilton cycles in a simple and symmetric manner as automorphic images of a

single Hamilton cycle. The method defines a labelling for the edges of star graphs

and works with automorphisms that map labels consistently. However, so far, no

optimal bounds have been given for the numbers of disjoint Hamilton cycles that can

be generated by the method, and it is not known whether a Hamilton decomposition

can be produced for Stn if n is greater than 5. In this paper we address these two

open problems.

This paper is structured as follows. We define the edge labelling for star graphs

Stn and corresponding label automorphisms in Section 2. In Section 3, we define

‘symmetric’ collections of edge-disjoint Hamilton cycles in star graphs to be those

collections generated as images of a particular known 2-labelled star graph under

label automorphisms. Upper bounds are obtained in Section 4 where we show that

Stn cannot have symmetric collections of more than ϕ(n)/2 disjoint Hamilton cy-

cles (Theorem 16). From this it follows that Stn is not symmetrically Hamilton

decomposable for non-prime n (Corollary 17). Lower bounds are obtained for even

n in Section 5 where we show that Stn does have a symmetric collection of ϕ(n)/2

Hamilton cycles in Theorem 20.

2. Labelled Star Graphs and Label Automorphisms

Throughout the paper, arithmetic will be modulo n when Stn is the star graph in

context. Therefore, x = y will mean x = y mod n. In arithmetic modulo n, we shall

use n instead of 0 so that the set of integers modulo n will be {1, . . . , n}.

Definition 1. The n-dimensional labelled star graph Stn = (V,E,L) is the (n-1)-

regular graph of order |Sn|, where Sn is the symmetric group of permutations of

order n, with a set V of vertices, E of edges and a mapping of edges to integer

labels L : E 7→ {1, . . . , bn/2c}, given by:

V (Stn) = {aρ(1) · · · aρ(n) | ρ ∈ Sn},
E(Stn) = {e | e = {aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n),

aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)}, ρ ∈ Sn},

L({aρ(1) · · · , aρ(i) · · · )} = δ(aρ(1), aρ(i))
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v1

l1

Φ // Φ(v1)

φl(l1)

v2
Φ
// Φ(v2)

Fig. 1. Label automorphism.

where

δ(ai, aj) = min{|i− j|, n− |i− j|} (1 ≤ i, j ≤ n)

is the distance between ai and aj on the cyclic graph whose vertices are a1, . . . , an
in which an is adjacent to an−1 and a1.

The class of automorphisms of Stn used are those which map labels consistently.

Definition 2. A label map for Stn is a bijection

φl : {1, . . . , bn/2c} 7→ {1, . . . , bn/2c}

of labels. An automorphism

Φ : V (Stn) 7→ V (Stn)

is a label automorphism if there exists a label map φl such that, for all {v1, v2} ∈
E(Stn),

L({Φ(v1),Φ(v2)}) = φl(L{v1, v2})

If G is a graph, H is a subgraph of G, and Φ an automorphism of G, Φ(H) will

refer to the subgraph of G that is the image of the vertices and edges of H under

Φ.

Definition 3. A Hamilton cycle H in a graph G is a subgraph that is a cycle which

contains all vertices of G.

If Φ is an automorphism and H is a Hamilton cycle of G, then clearly Φ(H) is also

a Hamilton cycle of G.The automorphisms used in [9] and [6] are defined ‘pointwise’

by means of bijections of the elements {a1, . . . , an}, which map distances between

elements of the cyclic graph a1 → . . .→ . . . an → a1 consistently in the image.

Lemma 4. Let φ : {a1, ..., an} 7→ {a1, ..., an} be a bijection. Then Φ : V (Stn) 7→
V (Stn), given by

Φ(aρ(1) . . . aρ(n)) = φ(aρ(1)) . . . φ(aρ(n))

is an automorphism of the graph Stn.
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Fig. 2. S4 with a Hamilton cycle shown in black.

Definition 5. A pointwise map for Stn is a bijection φ as in Lemma 4. The cor-

responding automorphism is the automorphism Φ as defined in Lemma 4. If φ is

such that there exists a bijection

φd : {1, . . . , bn/2c} 7→ {1, . . . , bn/2c}

satisfying, for all ai, aj ∈ {a1, . . . , an},

δ(φ(ai), φ(aj)) = φd(δ(ai, aj)) (1)

then Φ is trivially a label automorphism with φl = φd in Definition 2. We shall call

φd the corresponding distance map of Φ.

Distance maps allude to distances in the cyclic graph of the elements {a1, ..., an},
and not to distances in Stn. Not all pointwise maps yield label automorphisms of

Stn. For example, if n ≥ 4 and φ is defined such that φ(a1) = a2, φ(a2) = a1, φ(ai) =

ai (2 < i ≤ n), then the corrsponding Φ is not a label automorphism as a distance

map φd would have to satisfy (by (1)):

1 = δ(a1, a2) = δ(φ(a2), φ(a1)) = φd(δ(a2, a1)) =

φd(δ(a2, a3)) = δ(φ(a2), φ(a3)) = δ(a1, a3) = 2

The class of label automorphisms generated by a pointwise map and with a distance

map as in Definition 5 will be denoted by An.
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3. Symmetric Collections of Edge-Disjoint Hamilton Cycles

Symmetric collections of edge-disjoint Hamilton cycles are defined with respect to

the class of automorphisms An and the Hamilton cycle with edge labels 1 and 2

constructed in [9] as the base Hamilton cycle, so that each Hamilton cycle in a

symmetric collection has to be automorphic with this base Hamilton cycle via an

automorphism Φ ∈ An. This is different to the definition of symmetric collections

of Hamilton cycles in complete graphs [2]. We will use the following notation.

Definition 6. A vertex v ∈ V (Stn) of the form ai . . . (respectively . . . ai), where

ai ∈ {a1, . . . an}, will be denoted by −→a i (respectively ←−a i).

Definition 7. The base Hamilton cycle H12(n) in Stn is the Hamilton cycle con-

structed in [9] consisting of alternate paths of n(n − 1) − 1 edges with label 1 and

single edges with label 2:

. . . • 1 • . . . . . . . . . • 1 •︸ ︷︷ ︸
n(n−1)−1 edges

2 • 1 • . . . . . . . . . • 1 •︸ ︷︷ ︸
n(n−1)−1 edges

2 • . . .

The total number of edges with label 1 in H12(n) is n! − (n − 2)! which is greater

than the number of remaining edges with label 2 (= n!− (n!− (n− 2)!) = (n− 2)!)

in Stn, is such that all vertices v in H12(n) incident with edges with label 2 are of

the form ←−a n.

A collection of edge-disjoint Hamilton cycles in Stn are ‘symmetric’ if any Hamilton

cycle in the collection is the image of H12(n) under an automorphism in An.

Definition 8. A collection H̃ of edge-disjoint Hamilton cycles in Stn is symmetric

if H12(n) ∈ H̃ and if, for all He, Hf ∈ H̃, there is a label automorphism Φef ∈ An
such that Φef (He) = Hf .

Hamilton cycles in H̃ all have a similar structure.

Lemma 9. Let Φ ∈ An be a label automorphism with corresponding distance map

φd. Then, Φ(H12(n)) is a Hamilton cycle consisting of alternate paths of n(n−1)−1

edges with label φd(1) and single edges with label φd(2):

. . . • φd(1) • . . . . . . . . . • φd(1) •︸ ︷︷ ︸
n(n−1)−1 edges

φd(2) • φd(1) • . . . . . . . . . • φd(1) •︸ ︷︷ ︸
n(n−1)−1 edges

φd(2) • . . .

Proof. Follows from Definitions 5 and 7.

From Lemma 9, we see that a Hamilton cycle which is the image of H12(n) under

a label automorphism in An, is a succession of edges the majority of which share

the same label, and the remaining minority of which share the same second label.

This leads to the following definition.
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Definition 10. A Hamilton cycle which is the image of H12(n) under an automor-

phism as in Lemma 9, will be denoted by Hij(n) (or just Hij if n is clear from the

context) where the subscript i = φd(1) is the label for the majority of the edges and

the subscript j = φd(2) is the label for the minority of the edges. We shall call these

two sets of edges the majority and minority edges of Hij respectively.

4. Upper Bounds for Symmetric Collections

Not all labels can be majority or minority labels of images of H12 under label

automorphisms from An. The underlying reason for this is the difference in the

length of cycles of different labels.

Definition 11. The spanning subgraph of Stn comprising edges with labels i and

j where i, j ∈ {1, . . . , bn/2c} will be denoted by Cij(n) and the spanning subgraph

comprising only edges with label i will be denoted Ci(n). Each Ci(n) is a union of

disjoint cycles Bxi (n) of edges with label i

E(Ci(n)) =
⋃
x∈X

E(Bxi (n)) (X is some index set)

We shall call a cycle Bxi (n) an i-ball. Again, we will abbreviate our notation to Cij,

Ci and Bxi when n is clear from the context and will drop the x index in Bxi when

only one i-ball is under consideration. For an i-ball Bi, |Bi| will denote the number

of edges in Bi.

Fig. 3. The two B1(4) balls comprising C1(4) shown in black.

Important properties of i-balls are given in the following two lemmata.

Lemma 12. Let Bi be an i-ball in Stn, where i ∈ {1, . . . , bn/2c}. Then,

(i) |Bi| = n(n− 1) if i is coprime to n, and

(ii) |Bi| < n(n− 1) if i is not coprime to n.
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Proof. Let n = dq1 and i = dq2 where d = gcd(n, i) and gcd(q1, q2) = 1. Without

loss of generality, assume that the vertex

a1 . . . an ∈ Bi
Now, the elements

a1, a1+i, . . . , a1+(q1−1)i

are distinct (else, for some r, s such that 0 ≤ r < s ≤ (q1 − 1) and k ∈ N,

kn+ (1 + ri) = (1 + si) and so kdq1 = (s− r)dq2 and as gcd(q1, q2) = 1, q1 divides

(s− r) which is a contradiction as (s− r) ≤ (q1 − 1)). The path in Bi of the form:

−→a 1,
−→a 1+i, . . . ,

−→a 1+(q1−1)i,

where −→a 1 = a1 . . . an, rotates the elements a1, . . . , a1+(q1−1)i within the vertex

a1 . . . an in the sequence

a1 → a1+i → . . . a1+(q1−1)i → a1,

as q1i mod n = n. After q1−1 such rotations, the starting vertex a1 . . . an is reached

again, i.e. Bi is the cycle of (q1 − 1) sets of q1 vertices:

−→a 1,
−→a 1+i, . . .

−→a 1+(q1−1)i︸ ︷︷ ︸
q1 vertices

, . . . . . . . . .︸ ︷︷ ︸
q1 vertices

, . . . , . . . . . . . . .︸ ︷︷ ︸
q1 vertices

,−→a 1

separated by edges with label i, and returning to −→a 1 after q1(q1 − 1) edges. If i is

coprime to n, q1 = n and (i) follows. If i is not coprime to n, then q1 < n and (ii)

follows.

Lemma 13. Let Φ ∈ An and let Bxi be an i-ball in Stn, where 1 ≤ i ≤ bn/2c.
Then, there exists an i′-ball Bx

′

i′ in Stn, for some i′ with 1 ≤ i′ ≤ bn/2c, such that

Φ(Bxi ) = Bx
′

i′ and gcd(i, n) = 1 iff gcd(i′, n) = 1

Proof. As Φ is an automorphism, Φ(Bxi ) is a cycle such that |Φ(Bxi )| equals |Bxi |.
Also, as Φ is a label automorphism all edges of Φ(Bxi ) must have the same label

and thus Φ(Bxi ) must be an i′-ball, Bx
′

i′ say, for some i′ where 1 ≤ i′ ≤ bn/2c. Then,

by Lemma 12,

gcd(i, n) = 1 iff |Bxi | = n(n− 1) = |Bx
′

i′ | iff gcd(i′, n) = 1

As a result of Lemma 13, we are able to give constraints on how automorphisms

Φ ∈ An map labels. Indeed, we can characterize the pointwise maps φ that generate

label automorphisms Φ ∈ An.

Lemma 14. Let Φ ∈ An be a label automorphism with corresponding pointwise and

distance maps φ and φd respectively, as in Definition 5. Then:

(i) for all labels l ∈ {1, . . . , bn/2c},

gcd(l, n) = 1 iff gcd(φd(l), n) = 1
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(ii) there exist i0, j ∈ {1, . . . , n}, where j is coprime to n, such that

φ(ai) = ai0+ji (1 ≤ i ≤ n)

Proof. For (i), let Bxl be a l-ball in Stn. As Φ is a label automorphism with

distance map φd, Φ(Bxl ) is a φd(l)-ball Bx
′

φd(l) in Stn. By Lemma 13, gcd(l, n) = 1

iff gcd(φd(l), n) = 1.

For (ii), let i0, i1 ∈ {1, . . . , n} be such that

φ(an) = ai0 and φ(a1) = ai1

where φ is the pointwise map of Φ. Put

jp = δ(φ(an), φ(a1)) = min{|i0 − i1|, n− |i0 − i1|}

As δ(an, a1) = 1 and δ(φ(an), φ(a1)) = jp, it follows by (1) of Definition 5 that

φd(1) = jp (2)

Let ai ∈ {a1, . . . , an} and consider the ag, ah ∈ {a1, . . . , an} such that

φ(ai) = ag and φ(ai+1) = ah

As δ(ai, ai+1) = 1, by (1) and (2) we have that

δ(ag, ah) = jp

Therefore,

g − h = jp mod n or g − h = −jp mod n

and so

h = g − jp mod n or h = g + jp mod n

As Φ(an) = ai0 and φ is injective it is clear that either

Φ(an) = ai0 ,Φ(a1) = ai0−jp , . . . ,Φ(an−1) = ai0−(n−1)jp (3)

or

Φ(an) = ai0 ,Φ(a1) = ai0+jp , . . . ,Φ(an−1) = ai0+(n−1)jp (4)

hold. If (3) is the case put j = −jp and if (4) is the case put j = jp and the proof

of (ii) is complete.

Definition 15. Given a label automorphism Φ ∈ An and corresponding pointwise

map φ(ai) = ai0+ji, i0 is called the offset and j the generator of φ.

The constraints of label automorphisms in turn impose limits on the number of

edge-disjoint Hamilton cycles in symmetric collections.

Theorem 16. Let H̃ be a symmetric collection of edge-disjoint Hamilton cycles in

Stn. Then |H̃| ≤ ϕ(n)/2, where |H̃| is the number of Hamilton cycles in H̃.
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Proof. By Definition 8, as H̃ is symmetric, any Hamilton cycle in H̃ is the image

of H12 under a label automorphism and thus, by Lemma 9 and Definition 10, is of

the form Hij with majority edge labels i and minority edge labels j. By Lemma 14

(i) with l = 1, gcd(i, n) = 1. Thus, the edge-disjoint Hamilton cycles in H̃ can be

listed as

Hi1j1 , Hi2j2 , . . . ,Hisjs

with majority edges with labels i1, . . . , is respectively and minority edges with labels

j1, . . . , js respectively, and

gcd(ir, n) = 1 (for all r with 1 ≤ r ≤ s)

Therefore, {i1, . . . , is} ⊆ {1, . . . , bn/2c} is a set of edge labels coprime to n, and

there are at most ϕ(n)/2 such integer labels.

An important corollary to Theorem 16 is that if n is not a prime number, Stn is

not symmetrically Hamilton decomposable.

Corollary 17. If n ≥ 5 is not a prime number, then there is no symmetric collec-

tion of edge-disjoint Hamilton cycles H̃ such that

E(Stn) =
⋃
H∈H̃

E(H),

where E(H) denotes the set of edges in Hamilton cycle H.

Proof. If the edges E(Stn) of Stn are partitioned into a collection H̃ of disjoint

Hamilton cycles, H̃ will have bn/2c such cycles if n is odd and n/2− 1 such cycles

if n is even. However, if the non-prime n is odd then ϕ(n) < n− 1 and if n is even

ϕ(n) ≤ n/2. By Theorem 16, H̃ cannot be symmetric.

5. Lower Bounds in Even Dimensions

Although Stn is not symmetrically Hamilton decomposable for any even integer

n, we find an optimal symmetric collection of edge-disjoint Hamilton cycles, i.e. a

collection with ϕ(n)/2 Hamilton cycles, in Theorem 20 below. Constructing a sym-

metric collection involves finding a collection of label automorphisms which, when

applied to H12, generate disjoint Hamilton cycles as the images of H12. Lemma 14

(ii) characterizes the pointwise maps of label automorphisms to be of the form

φ(ai) = ai0+ji. In the following Lemma 18 (i) and (ii), the converse is given, i.e.

that any pointwise map of the form φ(ai) = ai0+ji consistently defines a distance

map of edge labels

φd : {1, ..., bn/2c} 7→ {1, ..., bn/2c}

and therefore a label automorphism.
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Lemma 18. Let n be odd or even and i0, j ∈ {1, . . . , n} be such that j is coprime

to n. If the bijection φj : {a1, ..., an} 7→ {a1, ..., an} is defined by

φj(ai) = ai0+ji (1 ≤ i ≤ n)

then the following hold:

(i) for all ag, ah ∈ {a1, ..., an},

δ(φj(ag), φj(ah)) = min{|j(g − h) mod n|, n− |j(g − h) mod n|},

(ii) there exists a bijection φdj : {1, ..., bn/2c} 7→ {1, ..., bn/2c} such that, for all

ag, ah ∈ {a1, ..., an},

δ(φj(ag), φj(ah)) = φdj (δ(ag, ah)),

(iii) if i0 = n, i.e. φj(ai) = aji, then for the label automorphism Φj correspond-

ing to φj as in Definition 5, we have that, for all ←−a n ∈ V (Stn), there exists
←−a ′n ∈ V (Stn) such that

Φj(
←−a n) =←−a ′n,

i.e. vertices ending in an are mapped to vertices ending in an by Φj.

Proof. For (i), we have that (arithmetic expressions are evaluated modulo n):

δ(φj(ag), φj(ah)) = min{|(i0 + jg)− (i0 + jh)|, n− |(i0 + jg)− (i0 + jh)|}
= min{|j(g − h)|, n− |j(g − h)|}

To prove (ii), we need to show that if ag, ah, ag′ , ah′ ∈ {a1, . . . , an}, then δ(ag, ah) =

δ(ag′ , ah′) implies that δ(φj(ag), φj(ah)) = δ(φj(ag′), φj(ah′)). We have that:

δ(ag, ah) = δ(ag′ , ah′)⇒ min{|g − h|, n− |g − h|}
= min{|g′ − h′|, n− |g′ − h′|}
⇒ |g − h| = |g′ − h′| or |g′ − h′| = n− |g − h|
⇒ {|g − h|, n− |g − h|} = {|g′ − h′|, n− |g′ − h′|}
⇒ {|j(g − h)|, n− |j(g − h)|}
= {|j(g′ − h′)|, n− |j(g′ − h′)|}
⇒ δ(φj(ag), φj(ah)) = δ(φj(ag′), φj(ah′)) (by (i))

Condition (iii) follows immediately from the definition of the corresponding label

automorphism Φj and the fact that φj(an) = an if i0 = n.

The offset i0 in pointwise maps φ(ai) = ai0+ji is important for ensuring that there

is no clash of minority edges. Lemma 18 (iii) above shows that, if i0 is not used,

then vertices ending in an are mapped to vertices ending in an. As, by Definition 7,

minority edges have vertices ending in an, any collection of Hamilton cycles which

use exclusively pointwise maps without i0, would have all minority edges in the

collection with vertices ending in an. This would lead to the possibility of the same
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edges belonging to different Hamilton cycles in the collection, as a clash of edge

labels of minority edges is unavoidable for even n. By use of i0, we can ensure that

even though different Hamilton cycles may share the same minority edge labels,

they will not share the same edges as their vertices will end in a different ai ∈
{a1, . . . , an}. The next lemma, Lemma 19, gives the pointwise map φ+1 which just

replaces ai by ai+1.

Lemma 19. Let φ+1 : {a1, ..., an} 7→ {a1, ..., an} be the pointwise map defined by:

φ+1(ai) = ai+1 (1 ≤ i ≤ n)

Then:

(i) φ+1 defines a corresponding distance map

φd+1 : {1, . . . , bn/2c} 7→ {1, . . . , bn/2c},

such that, for all l ∈ {1, . . . , bn/2c},

φd+1(l) = l

(ii) if Φ+1 is the label automorphism corresponding to φ+1 then, for all
←−a n ∈ V (Stn), there exists ←−a 1 ∈ V (Stn) such that

Φ+1(←−a n) =←−a 1

i.e. vertices ending in an are mapped to vertices ending in a1 by Φ+1.

Proof. If ag, ah ∈ {a1, ..., an} then (with arithmetic being modulo n)

δ(φ+1(ag), φ+1(ah)) = min{|(g + 1)− (h+ 1)|, n− |(g + 1)− (h+ 1)|}
= min{|g − h|, n− |g − h|}
= δ(ag, ah)

Thus, φ+1 defines the identity distance map φd+1 : L 7→ L. For (ii), we have that:

Φ+1(ag1 . . . agn−1an) = φ+1(ag1) . . . φ+1(agn−1)φ+1(an)

= ag1+1 . . . agn−1+1a1

We now prove that, for all even n, there are ϕ(n)/2 symmetric disjoint Hamilton

cycles. The Hamilton cycles are generated by the label automorphisms of chosen

pointwise maps, and make additional use of the pointwise map φ+1 of Lemma 19

to resolve any possible clashes of minority edges.

Theorem 20. For all even n, Stn has a symmetric collection of ϕ(n)/2 disjoint

Hamilton cycles H̃.

Proof. Let

i1, . . . , iϕ(n)/2
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be the ϕ(n)/2 integers less than n/2 which are coprime to n. First of all, for all

j ∈ {i1, . . . , iϕ(n)/2} define φj : {a1, ..., an} 7→ {a1, ..., an} by

φj(ai) = aji

Then, by Lemma 18 (ii), φj defines a distance map φdj and corresponding label

automorphism Φj as in Definition 5. Consider the image of H12 under Φj . From

Lemma 18 (i) and as j < n/2, we have that:

δ(a2, a1) = 1 and δ(φj(a2), φj(a1)) = min{|j|, n− |j|} = j

and

δ(a3, a1) = 2 and δ(φj(a3), φj(a1)) = min{|2j|, n− |2j|}

Thus, φdj (1) = j and φdj (2) = ±2j mod n. Taking the image Φj(H12) for each

j ∈ {i1, . . . , iϕ(n)/2} we produce a list of Hamilton cycles (with the majority and

minority edge labels indicated in the subscripts):

Hi1±2i1 , . . . ,Hiϕ(n/2)±2iϕ(n/2)
(5)

as in Definition 10. As i1, . . . , iϕ(n)/2 are distinct odd integers coprime to n, each

majority edge in any Hamilton cycle in (5) only occurs in that Hamilton cycle as no

other Hamilton cycle has the same edge label. However, it is possible that different

Hamilton cycles in (5) share the same minority edge labels. We may have, for some

distinct ir, is ∈ {i1, . . . , iϕ(n)/2},

min{|2ir mod n|, n− |2ir mod n|} = min{|2is mod n|, n− |2is mod n|}

when 2ir = −2is mod n, i.e.

2is = n− 2ir and so is = n/2− ir (6)

From (6), it is clear that any minority edge label may be common to at most two

Hamilton cycles in (5). To resolve this clash of minority edge labels, we replace one

of the Hamilton cycles involved by one with the same labels but different vertices

for minority edges. Suppose that the minority edges of Hir±2ir and His±2is clash,

so that is = n/2− ir. Consider the Hamilton cycles:

H ′ir±2ir = Φir (H12) and H ′is±2is = Φ+1(His±2is) = Φ+1(Φis(H12)) (7)

By Definitions 7 and 10, all vertices of minority edges of H12 are of the form←−a n, and

so, by Lemma 18 (iii), all vertices of minority edges of Φir (H12) and Φis(H12) are

also of the form ←−a n. From the latter it follows, by Lemma 19 (ii), that all vertices

of minority edges of Φ+1(Φis(H12)) are of the form ←−a 1. Thus, as the vertices of

minority edges of Hir±2ir are of the form ←−a n and those of H ′is±2is
are of the form

←−a 1, Hir±2ir and His±2is are edge disjoint despite having the same minority edge

labels. By resolving all pairs of clashes in this way in (5) we produce a collection of

ϕ(n)/2 symmetric and edge-disjoint Hamilton cycles as required.
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6. Conclusions

We leave as an open problem the question of whether the ϕ(n)/2 upper bound on

the number of symmetric edge-disjoint Hamilton cycles can be achieved for Stn
for any odd n other the known (positive) case of St5 [6]. In the case of even n, the

number of Hamilton cycles in a symmetric collection H̃ is limited to ϕ(n)/2 because

every majority edge label in H̃ has to be coprime to n as the majority edge label 1

of the base Hamilton cycle H12 is coprime to n. However, in the case of odd n, both

the majority and minority edge labels of Hamilton cycles in symmetric collections

have to be coprime to n as both the majority and minority edge labels of H12, i.e.

1 and 2, are coprime to n. For this reason, the greatest lower bound for symmetric

collections for all odd n may be ϕ(n)/4. This bound is nearly achieved by a 2ϕ(n)/9

bound for odd n in [5]. Along with our ϕ(n)/2 bound here for even n, it is clear

that the 2ϕ(n)/9 bound holds comfortably for all n hence achieving a better than

twofold improvement of the ϕ(n)/10 bound obtained for general n in [9].
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