469 research outputs found

    Phase limitations of Zames-Falb multipliers

    Full text link
    Phase limitations of both continuous-time and discrete-time Zames-Falb multipliers and their relation with the Kalman conjecture are analysed. A phase limitation for continuous-time multipliers given by Megretski is generalised and its applicability is clarified; its relation to the Kalman conjecture is illustrated with a classical example from the literature. It is demonstrated that there exist fourth-order plants where the existence of a suitable Zames-Falb multiplier can be discarded and for which simulations show unstable behavior. A novel phase-limitation for discrete-time Zames-Falb multipliers is developed. Its application is demonstrated with a second-order counterexample to the Kalman conjecture. Finally, the discrete-time limitation is used to show that there can be no direct counterpart of the off-axis circle criterion in the discrete-time domain

    Exponential Convergence Bounds using Integral Quadratic Constraints

    Full text link
    The theory of integral quadratic constraints (IQCs) allows verification of stability and gain-bound properties of systems containing nonlinear or uncertain elements. Gain bounds often imply exponential stability, but it can be challenging to compute useful numerical bounds on the exponential decay rate. In this work, we present a modification of the classical IQC results of Megretski and Rantzer that leads to a tractable computational procedure for finding exponential rate certificates

    Convex searches for discrete-time Zames-Falb multipliers

    Full text link
    In this paper we develop and analyse convex searches for Zames--Falb multipliers. We present two different approaches: Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) multipliers. The set of FIR multipliers is complete in that any IIR multipliers can be phase-substituted by an arbitrarily large order FIR multiplier. We show that searches in discrete-time for FIR multipliers are effective even for large orders. As expected, the numerical results provide the best â„“2\ell_{2}-stability results in the literature for slope-restricted nonlinearities. Finally, we demonstrate that the discrete-time search can provide an effective method to find suitable continuous-time multipliers.Comment: 12 page

    A stability criterion for systems with neutrally stable modes and deadzone nonlinearities

    Get PDF
    Stability analysis is considered for feedback interconnections of deadzone nonlinearities with linear systems that has a neutrally stable mode. Such systems do not have a unique equilibrium point and the standard techniques from passivity and Lyapunov theory cannot be applied. A stability criterion that generalizes the Popov criterion for this class of systems is derived in this report and several examples will prove its applicability

    Conditions for the equivalence between IQC and graph separation stability results

    Full text link
    This paper provides a link between time-domain and frequency-domain stability results in the literature. Specifically, we focus on the comparison between stability results for a feedback interconnection of two nonlinear systems stated in terms of frequency-domain conditions. While the Integral Quadratic Constrain (IQC) theorem can cope with them via a homotopy argument for the Lurye problem, graph separation results require the transformation of the frequency-domain conditions into truncated time-domain conditions. To date, much of the literature focuses on "hard" factorizations of the multiplier, considering only one of the two frequency-domain conditions. Here it is shown that a symmetric, "doubly-hard" factorization is required to convert both frequency-domain conditions into truncated time-domain conditions. By using the appropriate factorization, a novel comparison between the results obtained by IQC and separation theories is then provided. As a result, we identify under what conditions the IQC theorem may provide some advantage
    • …
    corecore