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LMI-based Stability Criteria for Discrete-time Lur’e Systems with
Monotonic, Sector- and Slope-restricted Nonlinearities

N. Syazreen Ahmad, W.P. Heath and Guang Li

Abstract—This note presents new LMI-based stability criteria
for the discrete-time multivariable Lur’e system with nonlineari-
ties that are monotonic, sector- and slope-restricted. Correspond-
ing Lur’e-Lyapunov functions are constructed for such a system.
The new criteria are expressed in a reasonably general form that
can be applied to both non-diagonal and diagonal nonlinearities.
We explicitly compare the new approach to the existing LMI-
based Popov-like criteria in the literature, and express the
results in terms of an Integral Quadratic Constraint (IQC).
The applications of the new criteria to some control problems
and strategies are briefly discussed. Numerical examples are
included to show their performance, and they are shown to be
less conservative than the previous results.

Notation: We write xk for x(k), xik for x(k) at coordinate i,
Vk for V (ξk) where ξk is the variable of the function V , and
(x1, x2) for a vector representing [xT1 , xT2 ]T . If M ∈ Cr×r,
then Re (M) is the real value of M , and He (M) = M +M∗.
If N ∈ Rr×r is positive semi-definite, then N

1
2 is the positive

semi-definite square root of N .

I. INTRODUCTION

The discrete-time Lur’e system considers a stable, strictly
proper linear time-invariant system

xk+1 = Axk +Buk; yk = Cxk (1)

which is asymptotically stable with xk ∈ Rnx ;uk, yk ∈ Rp.

Thus A ∈ Rnx×nx , B ∈ Rnx×p and C ∈ Rp×nx . The transfer
function of the system is given by

G(z) = C(zI −A)−1B. (2)

The system is in negative feedback with a memoryless, time-
invariant (static) nonlinearity φ : Rp → Rp that is locally
Lipschitz in yk with the relation

uk = −φ(yk). (3)

In the early 1960’s, many discrete-time Popov-like criteria
were developed for the SISO case via the frequency do-
main approach [24], [26], [25], [9], [10], [23]. Unlike the
continuous-time case, the discrete-time counterparts of the
Popov criterion have several versions depending on the prop-
erties of the nonlinearities. To distinguish the existing results,
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consider first the nonlinearity φ(yk) which satisfies φ(0) = 0,
and also the following conditions:

φ(y)T (K−1φ(y)− y) ≤ 0 ∀y (4)[
φ(y)− φ(ŷ)

]T [
S−1 [φ(y)− φ(ŷ)

]
− (y − ŷ)

]
≤ 0 ∀ŷ 6= y

(5)

where K and S are positive definite matrices. The inequality
in (4) corresponds to the sector bound conditions, whereas
the inequality (5) corresponds to the slope restrictions of the
nonlinearities. In the SISO case, the conditions (4) and (5)
reduce to

0 ≤ φ(y)

y
≤ K ∀y and 0 ≤ φ(y)− φ(ŷ)

y − ŷ ≤ S ∀ŷ 6= y

respectively. All the nonlinearities belonging to the above
conditions will be denoted by Ω(K,S). The lower slope
bound of zero means that the nonlinearity is nondecreasing
or monotonic. In a case where the lower slope bound of the
nonlinearity is −S, the corresponding set will then be denoted
by Ω̂(K,S), and it follows directly that Ω(K,S) ⊆ Ω̂(K,S).

Tsypkin (1962) [24] was among the first to propose the
frequency-domain criterion which is analogous to the circle
criterion in discrete-time domain. As for the discrete-time
counterparts of Popov criterion, there are two main results
published in 1964, namely the Tsypkin [25] and Jury-Lee
[9], [10] criteria. For the SISO case, Soliman and Kwoh
(1969) [22] proposed combining the two criteria, but this
idea does not seem to have been pursued in the literature
until recently. Both the Tsypkin and Jury-Lee criteria were
originally developed via the frequency-domain approach for
the SISO case. The Tsypkin criterion [25] says that, for
the nonlinearity belonging to Ω(K,∞), the SISO system is
absolutely stable if Re

[
K−1 + (1 + (1− z−1)N)G(z)

]
> 0 for

all |z| = 1 is satisfied with N ≥ 0. Kapila and Haddad [12]
extend the Tsypkin criterion to the diagonal MIMO case and
prove it via a Lyapunov function of the form

V 1
k = ζTk Pζk + 2

p∑
i=1

ni

∫ yik

0
φi(σ) dσ (6)

with ζk = (xk, yk), P > 0, K = diag (k1, . . . , kp) > 0 and
N = diag(n1, . . . , np) ≥ 0. The conservatism of this approach
is further reduced in Park and Kim (1998) [17] by extending
the Tsypkin frequency condition to

He
[
K−1 + (I + (1− z−1)N + (1− z)M)G(z)

]
> 0 (7)

∀|z| = 1, where M = diag(m1, . . . ,mp) is an additional posi-
tive semi-definite multiplier with NM = 0. The corresponding
Lyapunov function for this case is given by

V 2
k = V 1

k + 2

p∑
i=1

mi

∫ yik+1

0
[kiσ − φi(σ)] dσ. (8)



As for the Jury-Lee criteria [10], [11], the MIMO system with
nonlinearities that belong to Ω̂(K,S) (with S ≥ K) is said to be
absolutely stable if the frequency condition below is satisfied:

He
[
K−1 + (1 + (z − 1)N)G(z)− S|N |

2
|(z − 1)G(z)|2

]
> 0

(9)

∀|z| = 1, with S = diag(s1, . . . , sp) > 0 and N =

diag(n1, . . . , np) ∈ Rp×p. With P , K and S positive definite, N
is indefinite with appropriate dimensions. Sharma and Singh
(1981) [21] prove the Jury-Lee criterion for the diagonal
MIMO case via the Lyapunov function as follows:

V 3
k = xTk Pxk + 2

p∑
i=1

ni

∫ yik

0
φi(σ) dσ. (10)

The multiplier N in this case is also allowed to take negative
values, which is consistent with the original Jury-Lee criterion
in the frequency domain. A more recent result is presented in
Haddad and Bernstein (1994) [2]. In their results, a Lyapunov
function similar to (10) is constructed for the nonlinearities
belonging to Ω(K,S), but the multiplier N is restricted to be
nonnegative definite so as to ensure the positiveness of the
Lyapunov function. Note that although the Lyapunov function
(10) can be shown to be positive with indefinite multiplier,
the analysis in [21] does not appear to be complete (see the
results in Section 2).

To summarize, for the discrete-time MIMO Lur’e sys-
tem with nonlinearities that belong to Ω(K,∞), the Lur’e-
Lyapunov function is best expressed as in (8), which is the
extension of the Tsypkin criterion [25], and with nonlinearities
belonging to Ω(K,S), it is best described by the extension of
the Jury-Lee criterion as in (10). It should be noted that all the
existing results cited above are established for the case where
the nonlinearities are diagonal (in the sense that φi(y) = φi(y

i)

for i = 1, . . . , p).
From the input-output stability approach, Willems and

Brockett (1968) [29] provide the most general multiplier for
the nonlinearity belonging to Ω(K,∞) and Ω(K,S) in the
SISO case, which is the discrete-time counterpart of Zames-
Falb multiplier [30]. The possible superiority of the multiplier
approach is undeniable, but it is not always easy to find the
parameterization of the multiplier or to derive a criterion for a
given Lur’e problem. A weaker generalization of the multiplier
is also presented by Narendra and Cho (1968) [15] for the
SISO case where geometrical stability criteria are given. The
Lyapunov function associated with Narendra’s multiplier is
presented in [3], but the resulting criteria do not lead to a
convex search.

As the LMI solvers for modern controls nowadays have
greatly reduced the complexity of the controller analysis
and synthesis, the LMI is more preferrable compared to the
frequency-based approach. Most of the modern controllers are
also implemented digitally, which motivates the search for sta-
bility criteria in discrete-time settings. In this note, the problem
of interest is to find improved LMI-based stability criteria
for the discrete-time Lur’e systems where the nonlinearities
belong to Ω(K,S). A Lur’e-Lyapunov function for the system

is constructed by the extension of the Jury-Lee and the Tsypkin
criteria. Our main contribution is to include the extra term in
the stability criterion corresponding to the slope restriction yet
preserving convexity in the optimization. The result may be
seen as a discrete counterpart of [16]. Although more general
multipliers (such as Zames-Falb [30]) may be available for the
discrete-time systems, convex searches are not known without
severely restricting the subset of multipliers over which a
search is carried out. In the continuous domain, [16] often
gives better results than convex searches over subsets of the
Zames-Falb multipliers (see [28], and subsequent discussion
[1], [27]).

By employing some of the techniques from Heath and Li
(2009) [4], the results are extended to a more general case
which includes both diagonal and non-diagonal nonlinearities.
The new result for the diagonal MIMO case may be applied to
discrete-time anti-windup schemes for robust stability analysis
and synthesis (e.g.[14]). The importance of extending the
discrete-time Popov criterion to the non-diagonal case is
that it can be applied to stability and robustness analysis of
input-constrained model predictive control which is inherently
discrete (see [5], [7], [18]).

II. TECHNICAL RESULTS

Consider the system (1)-(2) in negative feedback with
nonlinearities that belong to Ω(K,S), where K,S ∈ Rp×p are
positive definite matrices. Define

Aa =

[
A B

0 0

]
, Ba =

[
0

I

]
, Ca =

[
C 0

]
. (11)

Note that x̂k+1 = Aax̂k + Bauk+1 and yk = Cax̂k, where
x̂k = (xk, uk). We will find it useful to define

La(z) =

[
(zI −Aa)−1Ba

I

]
. (12)

Based on the transfer function (2), we also have the relation

(z − 1)G(z) = C(A− I)(zI −A)−1B + CB. (13)

Throughout this note, we define N to be the set of positive
semi-definite multiplier N ∈ Rp×p. As the results derived are
based on LMIs, the associated matrices are defined explicitly
in the following definition.

Definition 2.1: Define A− = Aa − I and A+ = Aa + I.

Let K,S ∈ Rp×p and P ∈ R(nx+p)×(nx+p) be positive definite.
The symmetric matrices M0P , M1a, M1b, M2a, M2b, M3, M4,
and Ms are then defined as follows

M0P =

[
AT
a PAa − P AT

a PBa

BT
a PAa BT

a PBa

]
, (14)

M1a =

[
AT
−C

T
a SN1CaA− 0

0 0

]
,

M1b = He

[
−N1BaCaA− 0

0 0

]
,M2a = He

[
N2BaCaA− 0

0 0

]
,

M2b = He1

2

[
AT
−C

T
a KN2CaA+ 0

0 0

]
,



M3 = He

[
0 0

−N3CaA− 0

]
,Ms = He

[
0 0

−CaAa −K−1

]
,

M4 = He

[
N4Ba(CaA− − S−1BT

a ) BaS
−1N4

−N4(CaA− − S−1BT
a ) −N4S

−1

]
(15)

with N1, N2, N3, N4 ∈ N.
The next lemma will be used in the main results as it is

crucial in proving the general Lyapunov function in Theorem
2.1. Extra conditions need to be imposed on the nonlinearities
and the multiplier N so as to ensure the validity of the general
case.

Lemma 2.1: Consider the nonlinearity φ ∈ Ω(K,S) and
N ∈ N, and let (i) I ∈ N, (ii) SN = NS and KN = NK, (iii)
there exists some continuous ΦN : Rp → R such that the line
integral ΦN (yk) =

∫ yk
0 φ(σ)TN dσ is independent of path, and

(iv) [N
1
2 (φ(ŷ)−φ(y))]T [S−1N

1
2 (φ(ŷ)−φ(y))−N

1
2 (ŷ−y)] ≤ 0

holds for all ŷ 6= y. Define Λ = (xk, uk, uk+1). The nonlinear-
ity φ is then bounded as follows

(a) 2

∫ yk+1

yk

φ(σ)TN1dσ ≤ ΛT (M1a +M1b)Λ, (16)

(b) 2

∫ yk+1

yk

[Kσ − φ(σ)]TN2dσ ≤ ΛT (M2a +M2b)Λ, (17)

(c) 2

∫ yk+1

yk

φ(σ)TN3dσ ≤ ΛT (M3)Λ, (18)

with N1, N2, N3 ∈ N, and M0P , M1a, M1b, M2a, M2b and M3

defined as in Definition 2.1.
Proof: See Appendix.

The following definition is required for the results.
Definition 2.2: Based on Definition 2.1, define Mp and Mq

as follows

Mp =M1a +M1b +M2a +M2b +M3 +M4 +Ms, (19)
Mq =M1a +M1b +M2a +M3 +M4 +Ms. (20)

Now we can state our main theorem which gives a new LMI
condition (21) for testing the stability of discrete-time Lur’e
systems.

Theorem 2.1: Consider the system (1)-(2) with the nonlin-
earity φ ∈ Ω(K,S) satisfying (4) and (5) where K,S ∈ Rp×p

are positive definite. The feedback interconnection is assumed
to be well-posed. Assume conditions (i) to (iv) of Lemma 2.1
are satisfied, and (v) φ(yk)TN

1
2 (K−1N

1
2 φ(yk) − N

1
2 yk) ≤ 0

holds for all yk. Then the system is absolutely stable if there
exist a positive definite matrix P and N1, N2, N3, N4 ∈ N
such that

M0P +Mp < 0 (21)

with M0P and Mp defined as in Definitions 2.1 and 2.2.
Proof: See Appendix.

Remark 2.1: The contribution of Theorem 2.1 is the term
M4 in the LMI (21) via (15), which corresponds to the slope
restriction and is introduced via the S-procedure.

The condition (i) ensures that there exists some continuous
Φ : Rp×p such that ∇Φ = φ(σ), and this needs to be empha-
sized mainly for the non-diagonal MIMO case to show that
the Jacobian matrix of the nonlinearities is always symmetric
[20], [4]. As for the diagonal nonlinearities, the conditions

(i) to (v) are naturally satisfied as there are no cross-terms
between the inputs and the outputs of the nonlinearities. The
next corollary shows that the LMI in Theorem 2.1 can also
be simplified to another smaller LMI as they share the same
frequency condition.

Corollary 2.1: Under the conditions of Theorem 2.1, let
Ĝ(z) be defined as follows

Ĝ(z) = K−1 + |z − 1|2S−1N4 −
1

2
|z − 1|2G(z)∗N1SG(z)+[

I + (z − 1)(N1 −N2) + (1− z−1)N3 + |z − 1|2N4
]
G(z).

(22)

With M0P , Mp and Mq defined as in Definitions 2.1 and 2.2,
the following statements are equivalent:

(a) there exists some Pa > 0 such that M0Pa +Mp < 0,
(b) there exists some Pb > 0 such that M0Pb

+Mq < 0,
(c) Aa is Schur and He [Ĝ(z)] > 0 ∀|z| = 1.

Proof: See Appendix.
Remark 2.2: The frequency-domain condition (c) in Corol-

lary 2.1 may also be expressed in terms of the integral
quadratic constraint (IQC) [8] as follows:[
−G(z)

I

]∗ [
Q1(z) ∗
Q2(z) Q3(z)

][
−G(z)

I

]
≤ −εI (23)

for all |z| = 1, where Q1(z) = |z−1|2G(z)∗N1SG(z), Q2(z) =

−
[
I + (z − 1)(N1 −N2) + (1− z−1)N3 + |z − 1|2N4

]
, Q3(z) =

2K−1 − 2|z − 1|2S−1N4 and ε > 0.
The new criterion is applicable to the SISO, diagonal MIMO

and also general cases. As for the case where the nonlinearity
is diagonal, its scaled version is introduced in the following
definition and corollary (see [17] for an example of the scaled
Tsypkin criterion).

Definition 2.3: Following Definition 2.1, the symmetric
matrices M̃1a, M̃1b, M̃2a, M̃3, M̃4 and M̃s are defined as
follows

M̃1a =

[
AT
−C

T
a N̄1CaA− 0

0 0

]
,

M̃1b =He

[
−N̄1BaCaA− 0

0 0

]
, M̃2a = He

[
N̄2BaCaA− 0

0 0

]
,

M̃3 =He

[
0 0

−N̄3CaA− 0

]
, M̃s = He

[
0 0

−ΣCaAa −ΣK−1

]
,

M̃4 =He

[
N̄4BaCaA− −BaN̄4B

T
a BaN̄4

−N̄4CaA− + N̄4B
T
a −N̄4

]
,

where Π = diag(α1, . . . , αp) ∈ Rp×p with Π > 0, N̄i =

ΠTNiΠ ≥ 0 for i = 1, . . . , 4, and Σ = ΠT Π > 0.
Corollary 2.2: (A new scaled criterion.) Let the nonlin-

earities (3), the sector and slope matrices K and S, and
the multipliers N1, N2, N3 and N4 be set to diagonal with
appropriate dimensions. Following the results of Corollary 2.1,
let Ĝ2(z) be defined as follows

Ĝ2(z) =K−1 + |z − 1|2S−1N4 +
[
I + (z − 1)(N1 −N2)

+ (1− z−1)N3 + |z − 1|2N4
]
ΠG(z)Π−1

− 1

2
|z − 1|2Π−TG∗(z)ΠTSN1ΠG(z)Π−1.



For fixed values of S and K, the system is absolutely stable if
He Ĝ2(z) > 0 for all |z| = 1, or equivalently, if there exist P >

0, Ni ≥ 0 for i = 1, . . . , 4, and Σ > 0 such that M0P + M̃1a +

M̃1b + M̃2a + M̃3 + M̃4 + M̃s < 0 with M̃1a, M̃1b, M̃2a, M̃3, M̃4

and M̃s defined as in Definition 2.3.
Proof: See Appendix.

III. COMPARISONS WITH EXISTING CRITERIA

The frequency-domain criterion (22) and its correponding
Lyapunov function (27) are constructed with four positive
semi-definite multipliers: N1, N2, N3, and N4. If the nonlinear-
ities and the multipliers are set to diagonal with approproate
dimensions, the new result is then comparable with the ex-
isting discrete-time Popov-like criteria. It generalizes them as
follows:

• when N1 = N2 = N3 = N4 = 0, the criterion reduces to
the circle criterion [24],

• when N2 = N3 = N4 = 0, the criterion reduces to that of
Haddad and Bernstein [2],

• when N2 = N4 = 0, the criterion reduces to that of
Soliman and Kwoh [22],

• when N1 = N2 = N4 = 0, the criterion reduces to that of
Kapila and Haddad [12], and

• when N1 = N4 = 0, the criterion reduces to that of Park
and Kim [17].

From the comparisons made above, the term associated with
N4 appears to have no counterpart in the literature. It plays an
important role in making the proposed stability criterion less
conservative than the existing ones.

IV. APPLICATIONS

A. Application to SISO nonlinearities

Systems with monotonic, slope-bounded nonlinearities arise
in a variety of control problems. The most common examples
are systems having saturations in the actuators.
Example 1.

G1(z) =
−0.5z + 0.1

(z2 − z + 0.89)(z + 0.1)
(24)

Consider the example for the SISO case from [17] where a sta-
ble, discrete-time plant (24) is subject to a control saturation.
To identify the new approach, the maximum upper slope bound
at which the system is stable is computed for each criterion
(see Table I). In the case where the saturation is replaced by a
unit gain, the Nyquist criterion provides the maximum slope
bound, and it can be seen that the new approach gives the best
result for this example.

B. Application to non-diagonal nonlinearities

If the nonlinearity φ is represented by a quadratic program
(QP) as follows:

φ(y) = arg min
v

1

2
vTHv − vT y s.t. Lv ≤ b with b ≥ 0

with fixed Hessian matrix H > 0 and fixed L and b, the
KKT conditions can be used to show that the nonlinearity
satisfies the sector bound condition φ(y)T (Hφ(y) − y) ≤ 0

Table I
EXAMPLE 1

Criterion Maximum
slope

n1 n2 n3 n4

Circle Criterion[24] 1.0273 N/A N/A N/A N/A
Kapila &
Haddad[12]

1.0273 N/A N/A 0 N/A

Park & Kim [17] 1.7252 N/A 0.75638 0 N/A
Soliman & Kwoh
[22]

1.0273 0 N/A 0 N/A

Haddad & Bernstein
[2]

1.0273 0 N/A N/A N/A

Theorem 2.1 2.4474 0 6.5999 0 4.8657
Nyquist Criterion 2.4475 N/A N/A N/A N/A

[7] and the monotonic and slope-bound condition
[
φ(y) −

φ(ŷ)
]T [

H
[
φ(y)− φ(ŷ)

]
− (y − ŷ)

]
≤ 0 [18] [6] [13]. Such

conditions arise naturally in some input-constrained MPC
[7][13].

Therefore, in order to apply the new criteria to such a QP,
we assume, in general, no additional structure on φ beyond
the conditions of Theorem 2.1. Choose N1, N2, N3 and N4 to
be n1I, n2I, n3I and n4I respectively so that the conditions
(i)-(v) (in Lemma 2.1 and Theorem 2.1) are satisfied. Then
set K−1 = S−1 = H.

The next part example shows a non-diagonal MIMO case
where the nonlinearities are unstructured. A stable, strictly
proper plant G2(z) is in negative feedback with a controller
that is expressed by a QP with a positive definite Hessian
matrix H2. The plant’s output is multiplied by a positive
constant gain k, and the maximum stable gain for the new
criterion is compared with the generalized circle criterion [7].

Example 2. The 2-input-2-output plant and the Hessian matrix
are given by

G2(z) =
0.1z − 0.04

(z − 0.9)(z − 0.1)(z − 0.8)

[
5 2

3 4

]
and (25)

H2 =

[
6 0

0 3

]
respectively. The generalized circle criterion will give a max-
imum gain of k = 1.1877. Application of the new criterion
will give a higher maximum gain, which is k = 3.1069 with
n1 = 22.06 and n4 = 7.23.

Remark 4.1: In this case, the conditions of [18][13] give
k = 2.2070. However, there is no guarantee that the proposed
method beats [18][13] and the combination is the subject of
current research.

V. DISCUSSIONS AND CONCLUSIONS
As can be seen from the examples, the introduction of the

multiplier N4 in the new criteria can make an improvement
even in the SISO case. The additional term associated with
N4 in the LMI accurately describes the slope condition of
the nonlinearity. The performance of the new criterion for
the non-diagonal MIMO example is also shown to be better
than the generalized circle criterion. In conclusion, for the
nonlinearity which is pre-specified to be monotonic, sector-
and slope-restricted, the new LMI-based criteria provide better



results than the other existing LMI-based Popov-like criteria in
the literature. Although they might be weaker than multiplier-
based criteria, they are more computationally tractable.
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APPENDIX

A. Proof of Lemma 2.1(a)

Since S > 0, we have the inequality

[S−1N
1
2 (φ(σ)− φ(y)−N

1
2 (σ − y)]TS·

[S−1N
1
2 (φ(σ)− φ(y))−N

1
2 (σ − y)] ≥ 0.

Combining this with condition (iv) gives
[N

1
2 (σ− y)]T [N

1
2 (φ(σ)− φ(y))− SN

1
2 (σ− y)] ≤ 0. It follows

immediately that
[N

1
2 (σ− y)]T [N

1
2 (φ(σ)−φ(y))] ≤ [N

1
2 (σ− y)]TS[N

1
2 (σ− y)],

or equivalently, [σ − y]TN [φ(σ)− φ(y)] ≤ [σ − y]TSN [σ − y].
This proves that [φ(σ)− φ(y)]TN(σ− y) ≤ [σ− y]TSN [σ− y].
Let y = yk and parameterize σ = yk + λ(yk+1 − yk), with
λ ∈ [0, 1] and dσ = (yk+1 − yk)dλ, we can write

[φ(yk + λ(yk+1 − yk))− φ(yk)]TNλ(yk+1 − yk)

≤ [yk+1 − yk]Tλ2SN [yk+1 − yk].

Since λ ≥ 0, then
[φ(yk + λ(yk+1 − yk))− φ(yk)]TN(yk+1 − yk) ≤
[yk+1 − yk]TλSN [yk+1 − yk]. Integrating this gives∫ 1

0
[φ(yk + λ(yk+1 − yk))− φ(yk)]TN(yk+1 − yk) dλ

≤
∫ 1

0
[yk+1 − yk]TλSN [yk+1 − yk] dλ

and hence
∫ yk+1
yk

[φ(σ)−φ(yk)]TN dσ ≤
∫ yk+1
yk

(σ− yk)SN dσ.
This is sufficient to ensure∫ yk+1

yk

[φ(σ)− φ(yk)]TN dσ ≤
∫ yk+1

yk

(σ − yk)SN dσ

=
1

2
[yk+1 − yk]TSN [yk+1 − yk].

Hence

2

∫ yk+1

yk

φ(σ)TN1 dσ

≤ 2φ(yk)TN1(yk+1 − yk) + [yk+1 − yk]TSN1[yk+1 − yk]

= Right-hand side of (16) 2

B. Proof of Lemma 2.1(b)

We have [N
1
2 (φ(σ)− φ(y))]TS−1[N

1
2 (φ(σ)− φ(y))] ≥ 0.

Combining this with condition (iv) gives
[N

1
2 (φ(σ)− φ(y))]T [N

1
2 (σ − y)] ≥ 0, or equivalently

[φ(σ)− φ(y)]TN [σ − y] ≥ 0, and hence
φ(σ)TN [σ− y] ≥ φ(y)TN [σ− y]. Let y = yk and parameterize
σ = yk + λ(yk+1 − yk), with λ ∈ [0, 1] and

dσ = (yk+1 − yk)dλ. We can write
φ(yk +λ(yk+1−yk))TNλ(yk+1−yk) ≥ φ(yk)TNλ(yk+1−yk).
Since λ ≥ 0, then
φ(yk + λ(yk+1 − yk))TN(yk+1 − yk) ≥ φ(yk)TN(yk+1 − yk).
Integrating this gives∫ 1

0
φ(yk + λ(yk+1 − yk))TN(yk+1 − yk) dλ ≥∫ 1

0
φ(yk)TN(yk+1 − yk) dλ

and hence∫ yk+1

yk

φ(σ)TN dσ ≥
∫ yk+1

yk

φ(yk)TN dσ. (26)

Therefore
∫ yk+1
yk

φ(σ)TN dσ ≥ φ(yk)TN(yk+1 − yk). Hence

−2

∫ yk+1

yk

φ(σ)TN2dσ ≤ −2φ(yk)TN2(yk+1 − yk)

= ΛT (M2a)Λ.2

The inequality (17) then holds since

2

∫ yk+1

yk

[Kσ]TN2 dσ =
[
σTKN2σ

]yk+1

yk

= ΛT (M2b)Λ.

C. Proof of Lemma 2.1(c)

Since we have σ = yk + λ(yk+1 − yk) with λ ∈ [0, 1] in (26),
it follows immediately that∫ yk+1

yk

φ(σ)TN dσ

≤
∫ yk+1

yk

φ(yk+1)TN dσ = φ(yk+1)TN(yk+1 − yk).

Hence the result. 2

D. Proof of Theorem 2.1

Let the corresponding Lur’e-Lyapunov function of the sys-
tem be as follows:

V (x̂k) = x̂Tk P x̂k + 2

∫ yk

0
φ(σ)T (N1 +N3) dσ

+ 2

∫ yk

0
[Kσ − φ(σ)]TN2 dσ (27)

with N1, N2, N3 ∈ N. In order to prove the absolute sta-
bility of the system using the Lyapunov stability theory,
we need to show that the function (27) is radially un-
bounded by x̂k and its difference equation ∆V = Vk+1 − Vk
is negative definite for all nonzero x̂k. Inequality (v) en-
sures that φ(yk)T (N1 + N3)yk ≥ 0 for all yk , and hence∫ yk
0 φ(σ)T (N1+N3) dσ ≥ 0. Since K > 0, we have the inequal-

ity (K−1N
1
2 φ(yk) − N

1
2 yk)TK(K−1N

1
2 φ(yk) − N

1
2 yk) ≥ 0.

This, with (v), gives yTk N
1
2KN

1
2 yk − φ(yk)TNyk ≥ 0, or,

equivalently, [Kyk − φ(yk)]TNyk ≥ 0. This is sufficient to
ensure that

∫ yk
0 (Kσ−φ(σ))TN2 dσ ≥ 0. Therefore we can say

that Vk ≥ x̂Tk P x̂k for some P > 0 (i.e. the Lyapunov function
is positive definite for all x̂k and is radially unbounded by x̂k).



Now, we need to prove that ∆V ≤ −ε|x̂k|2 for some ε > 0.
Subtracting Vk from Vk+1, gives

∆V = x̂Tk+1P x̂k+1 − x̂Tk P x̂k + 2

∫ yk+1

yk

φ(σ)T (N1 +N3) dσ

+ 2

∫ yk+1

yk

[Kσ − φ(σ)]TN2 dσ.

Then we have x̂Tk+1P x̂k+1 − x̂Tk P x̂k = ΛT (M0P ) Λ

and following Lemma 2.1, we will get ∆V ≤
ΛT (M0P +M1a +M1b +M2a +M2b +M3) Λ. But the
sector bound of φ says ΛT (Ms) Λ ≥ 0, and the slope bound
(iv) gives ΛT (M4) Λ ≥ 0. Application of the S-procedure
gives ∆V ≤

ΛT (M0P +M1a +M1b +M2a +M2b +M3 +M4 +Ms) Λ.

It follows that ∆V is negative definite for all nonzero Λ,
provided (21) holds, and hence the system is absolutely stable.
2

E. Proof of Corollary 2.1

Invoking the discrete KYP lemma [19], statement (a) which
is similar to the LMI in (21) can be written as

La(z)∗(Mp)La(z) < 0 ∀|z| = 1 (28)

with La(z) defined in (12). This is also equivalent to
−He

[
Ĝ(z)

]
< 0 for all |z| = 1. It follows immediately

that the statement (a) is equivalent to statement (c), but we
also have La(z)∗(M2b)La(z) = 0 for all |z| = 1. Therefore,
the frequency domain inequality (28) is also equivalent to
La(z)∗(Mq)La(z) < 0 for all |z| = 1. Invoking the discrete
KYP Lemma again leads to statement (b). Hence statements
(a) and (b) are also equivalent. Note also that the top left
entries of both Mq and Mp are positive semidefinite due to
the integrals (a)-(c) in Lemma 2.1, so it is easy to prove that
Aa is Schur stable. 2

F. Proof of Corollary 2.2

Pre- and post-multiplying He Ĝ2(z) > 0 by ΠT and Π

respectively gives

La(z)∗
(
M̃1a + M̃1b + M̃2a + M̃3 + M̃4 + M̃s

)
La(z) < 0.

By using the discrete KYP lemma, we will get the LMI. And
since A is Schur stable, there exists a positive definite P . 2
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