27 research outputs found

    Evaluation complexity for nonlinear constrained optimization using unscaled kkt conditions and high-order models

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOThe evaluation complexity of general nonlinear, possibly nonconvex, constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an epsilon-approximate first-order critical point of the problem can be computed in order O(epsilon(1-2(p+1)/p)) evaluations of the problem's functions and their first p derivatives. This is achieved by using a two-phase algorithm inspired by Cartis, Gould, and Toint [SIAM J. Optim., 21 (2011), pp. 1721-1739; SIAM J. Optim., 23 (2013), pp. 1553-1574]. It is also shown that strong guarantees (in terms of handling degeneracies) on the possible limit points of the sequence of iterates generated by this algorithm can be obtained at the cost of increased complexity. At variance with previous results, the epsilon-approximate first-order criticality is defined by satisfying a version of the KKT conditions with an accuracy that does not depend on the size of the Lagrange multipliers.The evaluation complexity of general nonlinear, possibly nonconvex, constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an epsilon-approximate first-order critical point of the problem can be computed in order O(epsilon(1-2(p+1)/p)) evaluations of the problem's functions and their first p derivatives. This is achieved by using a two-phase algorithm inspired by Cartis, Gould, and Toint [SIAM J. Optim., 21 (2011), pp. 1721-1739; SIAM J. Optim., 23 (2013), pp. 1553-1574]. It is also shown that strong guarantees (in terms of handling degeneracies) on the possible limit points of the sequence of iterates generated by this algorithm can be obtained at the cost of increased complexity. At variance with previous results, the epsilon-approximate first-order criticality is defined by satisfying a version of the KKT conditions with an accuracy that does not depend on the size of the Lagrange multipliers.262951967FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2010/10133-0; 2013/03447-6; 2013/05475-7; 2013/07375-0; 2013/23494-9304032/2010-7; 309517/2014-1; 303750/2014-6; 490326/2013-

    Proximally Constrained Methods for Weakly Convex Optimization with Weakly Convex Constraints

    Full text link
    Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoretical convergence guarantees for non-convex unconstrained problems, it remains a challenge to design provably efficient algorithms for problems with non-convex functional constraints. This paper proposes a class of subgradient methods for constrained optimization where the objective function and the constraint functions are are weakly convex. Our methods solve a sequence of strongly convex subproblems, where a proximal term is added to both the objective function and each constraint function. Each subproblem can be solved by various algorithms for strongly convex optimization. Under a uniform Slater's condition, we establish the computation complexities of our methods for finding a nearly stationary point

    Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity

    Full text link
    We consider nonconvex constrained optimization problems and propose a new approach to the convergence analysis based on penalty functions. We make use of classical penalty functions in an unconventional way, in that penalty functions only enter in the theoretical analysis of convergence while the algorithm itself is penalty-free. Based on this idea, we are able to establish several new results, including the first general analysis for diminishing stepsize methods in nonconvex, constrained optimization, showing convergence to generalized stationary points, and a complexity study for SQP-type algorithms.Comment: To appear on Mathematics of Operations Researc
    corecore