15 research outputs found

    The Geometry of Scheduling

    Full text link
    We consider the following general scheduling problem: The input consists of n jobs, each with an arbitrary release time, size, and a monotone function specifying the cost incurred when the job is completed at a particular time. The objective is to find a preemptive schedule of minimum aggregate cost. This problem formulation is general enough to include many natural scheduling objectives, such as weighted flow, weighted tardiness, and sum of flow squared. Our main result is a randomized polynomial-time algorithm with an approximation ratio O(log log nP), where P is the maximum job size. We also give an O(1) approximation in the special case when all jobs have identical release times. The main idea is to reduce this scheduling problem to a particular geometric set-cover problem which is then solved using the local ratio technique and Varadarajan's quasi-uniform sampling technique. This general algorithmic approach improves the best known approximation ratios by at least an exponential factor (and much more in some cases) for essentially all of the nontrivial common special cases of this problem. Our geometric interpretation of scheduling may be of independent interest.Comment: Conference version in FOCS 201

    Data Reductions and Combinatorial Bounds for Improved Approximation Algorithms

    Full text link
    Kernelization algorithms in the context of Parameterized Complexity are often based on a combination of reduction rules and combinatorial insights. We will expose in this paper a similar strategy for obtaining polynomial-time approximation algorithms. Our method features the use of approximation-preserving reductions, akin to the notion of parameterized reductions. We exemplify this method to obtain the currently best approximation algorithms for \textsc{Harmless Set}, \textsc{Differential} and \textsc{Multiple Nonblocker}, all of them can be considered in the context of securing networks or information propagation

    How Unsplittable-Flow-Covering helps Scheduling with Job-Dependent Cost Functions

    Full text link
    Generalizing many well-known and natural scheduling problems, scheduling with job-specific cost functions has gained a lot of attention recently. In this setting, each job incurs a cost depending on its completion time, given by a private cost function, and one seeks to schedule the jobs to minimize the total sum of these costs. The framework captures many important scheduling objectives such as weighted flow time or weighted tardiness. Still, the general case as well as the mentioned special cases are far from being very well understood yet, even for only one machine. Aiming for better general understanding of this problem, in this paper we focus on the case of uniform job release dates on one machine for which the state of the art is a 4-approximation algorithm. This is true even for a special case that is equivalent to the covering version of the well-studied and prominent unsplittable flow on a path problem, which is interesting in its own right. For that covering problem, we present a quasi-polynomial time (1+ϵ)(1+\epsilon)-approximation algorithm that yields an (e+ϵ)(e+\epsilon)-approximation for the above scheduling problem. Moreover, for the latter we devise the best possible resource augmentation result regarding speed: a polynomial time algorithm which computes a solution with \emph{optimal }cost at 1+ϵ1+\epsilon speedup. Finally, we present an elegant QPTAS for the special case where the cost functions of the jobs fall into at most logn\log n many classes. This algorithm allows the jobs even to have up to logn\log n many distinct release dates.Comment: 2 pages, 1 figur

    The set covering problem revisited: an empirical study of the value of dual information

    Get PDF
    This paper investigates the role of dual information on the performances of heuristics designed for solving the set covering problem. After solving the linear programming relaxation of the problem, the dual information is used to obtain the two main approaches proposed here: (i) The size of the original problem is reduced and then the resulting model is solved with exact methods. We demonstrate the effectiveness of this approach on a rich set of benchmark instances compiled from the literature. We conclude that set covering problems of various characteristics and sizes may reliably be solved to near optimality without resorting to custom solution methods. (ii) The dual information is embedded into an existing heuristic. This approach is demonstrated on a well-known local search based heuristic that was reported to obtain successful results on the set covering problem. Our results demonstrate that the use of dual information significantly improves the efficacy of the heuristic in terms of both solution time and accuracy
    corecore