3 research outputs found

    Graph Searches and Their End Vertices

    Get PDF
    Graph search, the process of visiting vertices in a graph in a specific order, has demonstrated magical powers in many important algorithms. But a systematic study was only initiated by Corneil et al.~a decade ago, and only by then we started to realize how little we understand it. Even the apparently na\"{i}ve question "which vertex can be the last visited by a graph search algorithm," known as the end vertex problem, turns out to be quite elusive. We give a full picture of all maximum cardinality searches on chordal graphs, which implies a polynomial-time algorithm for the end vertex problem of maximum cardinality search. It is complemented by a proof of NP-completeness of the same problem on weakly chordal graphs. We also show linear-time algorithms for deciding end vertices of breadth-first searches on interval graphs, and end vertices of lexicographic depth-first searches on chordal graphs. Finally, we present 2nnO(1)2^n\cdot n^{O(1)}-time algorithms for deciding the end vertices of breadth-first searches, depth-first searches, maximum cardinality searches, and maximum neighborhood searches on general graphs

    On the end-vertex problem of graph searches

    No full text
    End vertices of graph searches can exhibit strong structural properties and are crucial for many graph algorithms. The problem of deciding whether a given vertex of a graph is an end-vertex of a particular search was first introduced by Corneil, K\"ohler and Lanlignel in 2010. There they showed that this problem is in fact NP-complete for LBFS on weakly chordal graphs. A similar result for BFS was obtained by Charbit, Habib and Mamcarz in 2014. Here, we prove that the end-vertex problem is NP-complete for MNS on weakly chordal graphs and for MCS on general graphs. Moreover, building on previous results, we show that this problem is linear for various searches on split and unit interval graphs

    On the End-Vertex Problem of Graph Searches

    No full text
    End vertices of graph searches can exhibit strong structural properties and are crucial for many graph algorithms. The problem of deciding whether a given vertex of a graph is an end-vertex of a particular search was first introduced by Corneil, K\"ohler and Lanlignel in 2010. There they showed that this problem is in fact NP-complete for LBFS on weakly chordal graphs. A similar result for BFS was obtained by Charbit, Habib and Mamcarz in 2014. Here, we prove that the end-vertex problem is NP-complete for MNS on weakly chordal graphs and for MCS on general graphs. Moreover, building on previous results, we show that this problem is linear for various searches on split and unit interval graphs
    corecore