5,453 research outputs found

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Analysis of Parallel Montgomery Multiplication in CUDA

    Get PDF
    For a given level of security, elliptic curve cryptography (ECC) offers improved efficiency over classic public key implementations. Point multiplication is the most common operation in ECC and, consequently, any significant improvement in perfor- mance will likely require accelerating point multiplication. In ECC, the Montgomery algorithm is widely used for point multiplication. The primary purpose of this project is to implement and analyze a parallel implementation of the Montgomery algorithm as it is used in ECC. Specifically, the performance of CPU-based Montgomery multiplication and a GPU-based implementation in CUDA are compared

    More Discriminants with the Brezing-Weng Method

    Get PDF
    The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number

    A Digital Signature Scheme for Long-Term Security

    Full text link
    In this paper we propose a signature scheme based on two intractable problems, namely the integer factorization problem and the discrete logarithm problem for elliptic curves. It is suitable for applications requiring long-term security and provides a more efficient solution than the existing ones

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201
    corecore