2,468 research outputs found

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    A Nine Month Progress Report on an Investigation into Mechanisms for Improving Triple Store Performance

    No full text
    This report considers the requirement for fast, efficient, and scalable triple stores as part of the effort to produce the Semantic Web. It summarises relevant information in the major background field of Database Management Systems (DBMS), and provides an overview of the techniques currently in use amongst the triple store community. The report concludes that for individuals and organisations to be willing to provide large amounts of information as openly-accessible nodes on the Semantic Web, storage and querying of the data must be cheaper and faster than it is currently. Experiences from the DBMS field can be used to maximise triple store performance, and suggestions are provided for lines of investigation in areas of storage, indexing, and query optimisation. Finally, work packages are provided describing expected timetables for further study of these topics

    Approximative filtering of XML documents in a publish/subscribe system

    Get PDF
    Publish/subscribe systems filter published documents and inform their subscribers about documents matching their interests. Recent systems have focussed on documents or messages sent in XML format. Subscribers have to be familiar with the underlying XML format to create meaningful subscriptions. A service might support several providers with slightly differing formats, e.g., several publishers of books. This makes the definition of a successful subscription almost impossible. This paper proposes the use of an approximative language for subscriptions. We introduce the design of our ApproXFilter algorithm for approximative filtering in a publish/subscribe system. We present the results of our performance analysis of a prototypical implementation

    Processing SPARQL queries with regular expressions in RDF databases

    Get PDF
    Background: As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results: In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions: Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.X113sciescopu
    • ā€¦
    corecore