6 research outputs found

    Spatiospectral concentration of vector fields on a sphere

    Full text link
    We construct spherical vector bases that are bandlimited and spatially concentrated, or, alternatively, spacelimited and spectrally concentrated, suitable for the analysis and representation of real-valued vector fields on the surface of the unit sphere, as arises in the natural and biomedical sciences, and engineering. Building on the original approach of Slepian, Landau, and Pollak we concentrate the energy of our function bases into arbitrarily shaped regions of interest on the sphere, and within certain bandlimits in the vector spherical-harmonic domain. As with the concentration problem for scalar functions on the sphere, which has been treated in detail elsewhere, a Slepian vector basis can be constructed by solving a finite-dimensional algebraic eigenvalue problem. The eigenvalue problem decouples into separate problems for the radial and tangential components. For regions with advanced symmetry such as polar caps, the spectral concentration kernel matrix is very easily calculated and block-diagonal, lending itself to efficient diagonalization. The number of spatiospectrally well-concentrated vector fields is well estimated by a Shannon number that only depends on the area of the target region and the maximal spherical-harmonic degree or bandwidth. The spherical Slepian vector basis is doubly orthogonal, both over the entire sphere and over the geographic target region. Like its scalar counterparts it should be a powerful tool in the inversion, approximation and extension of bandlimited fields on the sphere: vector fields such as gravity and magnetism in the earth and planetary sciences, or electromagnetic fields in optics, antenna theory and medical imaging.Comment: Submitted to Applied and Computational Harmonic Analysi

    A constructive theory of sampling for image synthesis using reproducing kernel bases

    Get PDF
    Sampling a scene by tracing rays and reconstructing an image from such pointwise samples is fundamental to computer graphics. To improve the efficacy of these computations, we propose an alternative theory of sampling. In contrast to traditional formulations for image synthesis, which appeal to nonconstructive Dirac deltas, our theory employs constructive reproducing kernels for the correspondence between continuous functions and pointwise samples. Conceptually, this allows us to obtain a common mathematical formulation of almost all existing numerical techniques for image synthesis. Practically, it enables novel sampling based numerical techniques designed for light transport that provide considerably improved performance per sample. We exemplify the practical benefits of our formulation with three applications: pointwise transport of color spectra, projection of the light energy density into spherical harmonics, and approximation of the shading equation from a photon map. Experimental results verify the utility of our sampling formulation, with lower numerical error rates and enhanced visual quality compared to existing techniques

    5D Covariance Tracing for Efficient Defocus and Motion Blur

    Get PDF
    The rendering of effects such as motion blur and depth-of-field requires costly 5D integrals. We dramatically accelerate their computation through adaptive sampling and reconstruction based on the prediction of the anisotropy and bandwidth of the integrand. For this, we develop a new frequency analysis of the 5D temporal light-field, and show that first-order motion can be handled through simple changes of coordinates in 5D. We further introduce a compact representation of the spectrum using the co- variance matrix and Gaussian approximations. We derive update equations for the 5 × 5 covariance matrices for each atomic light transport event, such as transport, occlusion, BRDF, texture, lens, and motion. The focus on atomic operations makes our work general, and removes the need for special-case formulas. We present a new rendering algorithm that computes 5D covariance matrices on the image plane by tracing paths through the scene, focusing on the single-bounce case. This allows us to reduce sampling rates when appropriate and perform reconstruction of images with complex depth-of-field and motion blur effects

    On the Effective Dimension of Light Transport

    No full text
    Abstract Light transport is often characterized within a high-dimensional space although practitioners have long known that it commonly behaves as a much lower-dimensional phenomenon. We study the effective dimension of light transport over a neighborhood on the scene manifold and show that under plausible assumptions the dimensionality is characterized by the spectrum of the spatio-spectral concentration problem. This allows us to improve existing estimates for the dimension in computer graphics using a more insightful derivation and for the first time we obtain optimal representations. The relevance of our results for existing rendering applications is discussed
    corecore