1,629 research outputs found

    Binning for IC Quality: Experimental Studies on the SEMATECH Data

    Get PDF
    The earlier smaller bipolar study did not provide a high enough bin 0 population to directly observe test escapes and thereby estimate defect levels for the best bin. Results presented here indicate that the best bin can be reasonably expected to show a 2 - 5 factor improvement in defect levels over the average for the lot for moderate to high yields (the overall yield for these experiments was approximately 65%). The experiments also confirm the dependence of the best bin quality on test transparency. The defect level improvement is poorer for the case Of IDDQ escapes where the tests applied had a much higher escape rate. Overall experimental results are consistent with analytical projections for typical values of the clustering parameter in [9]. The final version of this paper will include extensive analysis to validate the analytical models based on this data

    A Review of Bayesian Methods in Electronic Design Automation

    Full text link
    The utilization of Bayesian methods has been widely acknowledged as a viable solution for tackling various challenges in electronic integrated circuit (IC) design under stochastic process variation, including circuit performance modeling, yield/failure rate estimation, and circuit optimization. As the post-Moore era brings about new technologies (such as silicon photonics and quantum circuits), many of the associated issues there are similar to those encountered in electronic IC design and can be addressed using Bayesian methods. Motivated by this observation, we present a comprehensive review of Bayesian methods in electronic design automation (EDA). By doing so, we hope to equip researchers and designers with the ability to apply Bayesian methods in solving stochastic problems in electronic circuits and beyond.Comment: 24 pages, a draft version. We welcome comments and feedback, which can be sent to [email protected]

    Atomic-layer-deposited surface passivation schemes for silicon solar cells

    Get PDF

    Materials for in-vessel components

    Get PDF
    The EUROfusion materials research program for DEMO in-vessel components aligns with the European Fusion Roadmap and comprises the characterization and qualification of the in-vessel baseline materials EUROFER97, CuCrZr and tungsten, advanced structural and high heat flux materials developed for risk mitigation, as well as optical and dielectric functional materials. In support of the future engineering design activities, the focus is primarily to assemble qualified data to supply the design process and generate material property handbooks, material assessment reports, DEMO design criteria and material design limits for DEMO thermal, mechanical and environmental conditions. Highlights are provided on advanced material development including (a) steels optimized towards lower or higher operational windows, (b) heat sink materials (copper alloys or composites) and (c) tungsten based plasma facing materials. The rationale for the down-selection of material choices is also presented. The latter is strongly linked with the results of neutron irradiation campaigns for baseline material characterization (structural, high heat flux and functional materials) and screening of advanced materials. Finally, an outlook on future material development activities to be undertaken during the upcoming Concept Design Phase for DEMO will be provided, which highly depends on an effective interface between materials’ development and components’ design driven by a common technology readiness assessment of the different systems

    A complete design path for the layout of flexible macros

    Get PDF
    XIV+172hlm.;24c

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems
    • …
    corecore