22,956 research outputs found

    Encryption – use and control in E-commerce

    Get PDF
    The author describes how cryptography can be used to address modern business requirements such as identity protection, secure web access and digital signatures. Article by Robert Bond (Head of Innovation & Technology Group, Hobson Audley and Fellow of SALS). Published in Amicus Curiae - Journal of the Institute of Advanced Legal Studies and its Society for Advanced Legal Studies. The Journal is produced by the Society for Advanced Legal Studies at the Institute of Advanced Legal Studies, University of London

    The Evolution of Embedding Metadata in Blockchain Transactions

    Get PDF
    The use of blockchains is growing every day, and their utility has greatly expanded from sending and receiving crypto-coins to smart-contracts and decentralized autonomous organizations. Modern blockchains underpin a variety of applications: from designing a global identity to improving satellite connectivity. In our research we look at the ability of blockchains to store metadata in an increasing volume of transactions and with evolving focus of utilization. We further show that basic approaches to improving blockchain privacy also rely on embedding metadata. This paper identifies and classifies real-life blockchain transactions embedding metadata of a number of major protocols running essentially over the bitcoin blockchain. The empirical analysis here presents the evolution of metadata utilization in the recent years, and the discussion suggests steps towards preventing criminal use. Metadata are relevant to any blockchain, and our analysis considers primarily bitcoin as a case study. The paper concludes that simultaneously with both expanding legitimate utilization of embedded metadata and expanding blockchain functionality, the applied research on improving anonymity and security must also attempt to protect against blockchain abuse.Comment: 9 pages, 6 figures, 1 table, 2018 International Joint Conference on Neural Network

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    An identity-based key infrastructure suitable for messaging applications

    Get PDF
    Abstract—Identity-based encryption (IBE) systems are relatively recently proposed; yet they are highly popular for messaging applications since they offer new features such as certificateless infrastructure and anonymous communication. In this paper, we intended to propose an IBE infrastructure for messaging applications. The proposed infrastructure requires one registration authority and at least one public key generator and they secret share the master secret key. In addition, the PKG also shares the same master secret with each user in the system in a different way. Therefore, the PKG will never be able to learn the private keys of users under non-collusion assumption. We discuss different aspects of the proposed infrastructure such as security, key revocation, uniqueness of the identities that constitute the main drawbacks of other IBE schemes. We demonstrate that our infrastructure solves many of these drawbacks under certain assumptions

    Biometrics and Network Security

    Get PDF
    This paper examines the techniques used in the two categories of biometric techniques (physiological and behavioral) and considers some of the applications for biometric technologies. Common physiological biometrics include finger characteristics (fingertip [fingerprint], thumb, finger length or pattern), palm (print or topography), hand geometry, wrist vein, face, and eye (retina or iris). Behavioral biometrics include voiceprints, keystroke dynamics, and handwritten signatures

    To Share or Not to Share in Client-Side Encrypted Clouds

    Full text link
    With the advent of cloud computing, a number of cloud providers have arisen to provide Storage-as-a-Service (SaaS) offerings to both regular consumers and business organizations. SaaS (different than Software-as-a-Service in this context) refers to an architectural model in which a cloud provider provides digital storage on their own infrastructure. Three models exist amongst SaaS providers for protecting the confidentiality data stored in the cloud: 1) no encryption (data is stored in plain text), 2) server-side encryption (data is encrypted once uploaded), and 3) client-side encryption (data is encrypted prior to upload). This paper seeks to identify weaknesses in the third model, as it claims to offer 100% user data confidentiality throughout all data transactions (e.g., upload, download, sharing) through a combination of Network Traffic Analysis, Source Code Decompilation, and Source Code Disassembly. The weaknesses we uncovered primarily center around the fact that the cloud providers we evaluated were each operating in a Certificate Authority capacity to facilitate data sharing. In this capacity, they assume the role of both certificate issuer and certificate authorizer as denoted in a Public-Key Infrastructure (PKI) scheme - which gives them the ability to view user data contradicting their claims of 100% data confidentiality. We have collated our analysis and findings in this paper and explore some potential solutions to address these weaknesses in these sharing methods. The solutions proposed are a combination of best practices associated with the use of PKI and other cryptographic primitives generally accepted for protecting the confidentiality of shared information

    Prochlo: Strong Privacy for Analytics in the Crowd

    Full text link
    The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. (cont.; see the paper
    corecore