2,963 research outputs found

    On the Development of the Intersection of a Plane With a Polytope

    Get PDF
    Define a “slice” curve as the intersection of a plane with the surface of a polytope, i.e., a convex polyhedron in three dimensions. We prove that a slice curve develops on a plane without self-intersection. The key tool used is a generalization of Cauchy\u27s arm lemma to permit nonconvex “openings” of a planar convex chain

    Existence and uniqueness theorem for convex polyhedral metrics on compact surfaces

    Full text link
    We state that any constant curvature Riemannian metric with conical singularities of constant sign curvature on a compact (orientable) surface SS can be realized as a convex polyhedron in a Riemannian or Lorentzian) space-form. Moreover such a polyhedron is unique, up to global isometries, among convex polyhedra invariant under isometries acting on a totally umbilical surface. This general statement falls apart into 10 different cases. The cases when SS is the sphere are classical.Comment: Survey paper. No proof. 10 page

    Pruning Algorithms for Pretropisms of Newton Polytopes

    Full text link
    Pretropisms are candidates for the leading exponents of Puiseux series that represent solutions of polynomial systems. To find pretropisms, we propose an exact gift wrapping algorithm to prune the tree of edges of a tuple of Newton polytopes. We prefer exact arithmetic not only because of the exact input and the degrees of the output, but because of the often unpredictable growth of the coordinates in the face normals, even for polytopes in generic position. We provide experimental results with our preliminary implementation in Sage that compare favorably with the pruning method that relies only on cone intersections.Comment: exact, gift wrapping, Newton polytope, pretropism, tree pruning, accepted for presentation at Computer Algebra in Scientific Computing, CASC 201

    A convexity theorem for real projective structures

    Full text link
    Given a finite collection P of convex n-polytopes in RP^n (n>1), we consider a real projective manifold M which is obtained by gluing together the polytopes in P along their facets in such a way that the union of any two adjacent polytopes sharing a common facet is convex. We prove that the real projective structure on M is (1) convex if P contains no triangular polytope, and (2) properly convex if, in addition, P contains a polytope whose dual polytope is thick. Triangular polytopes and polytopes with thick duals are defined as analogues of triangles and polygons with at least five edges, respectively.Comment: 61 pages, 19 figure
    corecore