4,616 research outputs found

    A database management capability for Ada

    Get PDF
    The data requirements of mission critical defense systems have been increasing dramatically. Command and control, intelligence, logistics, and even weapons systems are being required to integrate, process, and share ever increasing volumes of information. To meet this need, systems are now being specified that incorporate data base management subsystems for handling storage and retrieval of information. It is expected that a large number of the next generation of mission critical systems will contain embedded data base management systems. Since the use of Ada has been mandated for most of these systems, it is important to address the issues of providing data base management capabilities that can be closely coupled with Ada. A comprehensive distributed data base management project has been investigated. The key deliverables of this project are three closely related prototype systems implemented in Ada. These three systems are discussed

    BSML: A Binding Schema Markup Language for Data Interchange in Problem Solving Environments (PSEs)

    Full text link
    We describe a binding schema markup language (BSML) for describing data interchange between scientific codes. Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with a PSE or application composition system that views model specification and execution as a problem of managing semistructured data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and conversion. We present BSML and describe its application to a PSE for wireless communications system design

    Geoprocessing Optimization in Grids

    Get PDF
    Geoprocessing is commonly used in solving problems across disciplines which feature geospatial data and/or phenomena. Geoprocessing requires specialized algorithms and more recently, due to large volumes of geospatial databases and complex geoprocessing operations, it has become data- and/or compute-intensive. The conventional approach, which is predominately based on centralized computing solutions, is unable to handle geoprocessing efficiently. To that end, there is a need for developing distributed geoprocessing solutions by taking advantage of existing and emerging advanced techniques and high-performance computing and communications resources. As an emerging new computing paradigm, grid computing offers a novel approach for integrating distributed computing resources and supporting collaboration across networks, making it suitable for geoprocessing. Although there have been research efforts applying grid computing in the geospatial domain, there is currently a void in the literature for a general geoprocessing optimization. In this research, a new optimization technique for geoprocessing in grid systems, Geoprocessing Optimization in Grids (GOG), is designed and developed. The objective of GOG is to reduce overall response time with a reasonable cost. To meet this objective, GOG contains a set of algorithms, including a resource selection algorithm and a parallelism processing algorithm, to speed up query execution. GOG is validated by comparing its optimization time and estimated costs of generated execution plans with two existing optimization techniques. A proof of concept based on an application in air quality control is developed to demonstrate the advantages of GOG

    The AliEn system, status and perspectives

    Full text link
    AliEn is a production environment that implements several components of the Grid paradigm needed to simulate, reconstruct and analyse HEP data in a distributed way. The system is built around Open Source components, uses the Web Services model and standard network protocols to implement the computing platform that is currently being used to produce and analyse Monte Carlo data at over 30 sites on four continents. The aim of this paper is to present the current AliEn architecture and outline its future developments in the light of emerging standards.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, Word, 10 figures. PSN MOAT00

    Three light-weight execution engines in Java for web data-intensive data source contents : (extended abstract)

    Get PDF
    Title from cover. "March, 1998."Includes bibliographical references (p. 8-9).Ricardo Ambrose ... [et al.]

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition
    corecore