18,774 research outputs found

    Exact solutions for the two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan

    Full text link
    The two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan have been calculated exactly for arbitrary size as well as arbitrary individual edge and node reliabilities, using transfer matrices of dimension four at most. While the all-terminal reliabilities of these graphs are identical, the special case of identical edge (pp) and node (ρ\rho) reliabilities shows that their two-terminal reliabilities are quite distinct, as demonstrated by their generating functions and the locations of the zeros of the reliability polynomials, which undergo structural transitions at ρ=1/2\rho = \displaystyle {1/2}

    Equivalent String Networks and Uniqueness of BPS States

    Get PDF
    We analyze string networks in 7-brane configurations in IIB string theory. We introduce a complex parameter M characterizing equivalence classes of networks on a fixed 7-brane background and specifying the BPS mass of the network as M_{BPS} = | M |. We show that M can be calculated without knowing the particular representative of the BPS state. Based on detailed examination of backgrounds with three and four 7-branes we argue that equivalent networks may not be simultaneously BPS, an essential requirement of consistency.Comment: 28 pages, LaTeX, 18 eps figure

    Similarity Renormalization, Hamiltonian Flow Equations, and Dyson's Intermediate Representation

    Get PDF
    A general framework is presented for the renormalization of Hamiltonians via a similarity transformation. Divergences in the similarity flow equations may be handled with dimensional regularization in this approach, and the resulting effective Hamiltonian is finite since states well-separated in energy are uncoupled. Specific schemes developed several years ago by Glazek and Wilson and contemporaneously by Wegner correspond to particular choices within this framework, and the relative merits of such choices are discussed from this vantage point. It is shown that a scheme for the transformation of Hamiltonians introduced by Dyson in the early 1950's also corresponds to a particular choice within the similarity renormalization framework, and it is argued that Dyson's scheme is preferable to the others for ease of computation. As an example, it is shown how a logarithmically confining potential arises simply at second order in light-front QCD within Dyson's scheme, a result found previously for other similarity renormalization schemes. Steps toward higher order and nonperturbative calculations are outlined. In particular, a set of equations analogous to Dyson-Schwinger equations is developed.Comment: REVTex, 32 pages, 7 figures (corrected references

    Maximum common subgraph isomorphism algorithms for the matching of chemical structures

    Get PDF
    The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinformatics tasks

    Differential Equations for Two-Loop Four-Point Functions

    Get PDF
    At variance with fully inclusive quantities, which have been computed already at the two- or three-loop level, most exclusive observables are still known only at one-loop, as further progress was hampered so far by the greater computational problems encountered in the study of multi-leg amplitudes beyond one loop. We show in this paper how the use of tools already employed in inclusive calculations can be suitably extended to the computation of loop integrals appearing in the virtual corrections to exclusive observables, namely two-loop four-point functions with massless propagators and up to one off-shell leg. We find that multi-leg integrals, in addition to integration-by-parts identities, obey also identities resulting from Lorentz-invariance. The combined set of these identities can be used to reduce the large number of integrals appearing in an actual calculation to a small number of master integrals. We then write down explicitly the differential equations in the external invariants fulfilled by these master integrals, and point out that the equations can be used as an efficient method of evaluating the master integrals themselves. We outline strategies for the solution of the differential equations, and demonstrate the application of the method on several examples.Comment: 26 pages, LaTeX; some explanatory comments added; several typos correcte

    Off-shell Currents and Color-Kinematics Duality

    Get PDF
    We elaborate on the color-kinematics duality for off-shell diagrams in gauge theories coupled to matter, by investigating the scattering process ggss,qqˉ,gggg\to ss, q\bar q, gg, and show that the Jacobi relations for the kinematic numerators of off-shell diagrams, built with Feynman rules in axial gauge, reduce to a color-kinematics violating term due to the contributions of sub-graphs only. Such anomaly vanishes when the four particles connected by the Jacobi relation are on their mass shell with vanishing squared momenta, being either external or cut particles, where the validity of the color-kinematics duality is recovered. We discuss the role of the off-shell decomposition in the direct construction of higher-multiplicity numerators satisfying color-kinematics identity in four as well as in dd dimensions, for the latter employing the Four Dimensional Formalism variant of the Four Dimensional Helicity scheme. We provide explicit examples for the QCD process ggqqˉggg\to q\bar{q}g.Comment: Accepted version for publication in PLB. Manuscript extended: 19 pages, 15 figures; C/K duality for tree-level amplitudes in dimensional regularization added; references added; title modifie

    Choosing integration points for QCD calculations by numerical integration

    Get PDF
    I discuss how to sample the space of parton momenta in order to best perform the numerical integrations that lead to a calculation of three jet cross sections and similar observables in electron-positron annihilation.Comment: 25 pages with 8 figure

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
    corecore