833 research outputs found

    The subband modulation: a joint power and rate allocation framework for subband image and video transmission

    Full text link

    Combining Adaptive Coding and Modulation With Hierarchical Modulation in Satcom Systems

    Get PDF
    We investigate the design of a broadcast system in order to maximize throughput. This task is usually challenging due to channel variability. Forty years ago, Cover introduced and compared two schemes: time sharing and superposition coding. Even if the second scheme was proved to be optimal for some channels, modern satellite communications systems such as DVB-SH and DVB-S2 rely mainly on a time sharing strategy to optimize the throughput. They consider hierarchical modulation, a practical implementation of superposition coding, but only for unequal error protection or backward compatibility purposes. In this article, we propose to combine time sharing and hierarchical modulation together and show how this scheme can improve the performance in terms of available rate. We introduce a hierarchical 16-APSK to boost the performance of the DVB-S2 standard. We also evaluate various strategies to group the receivers in pairs when using hierarchical modulation. Finally, we show in a realistic case, based on DVB-S2, that the combined scheme can provide throughput gains greater than 10% compared to the best time sharing strategy

    Bandwidth-efficient communication systems based on finite-length low density parity check codes

    Get PDF
    Low density parity check (LDPC) codes are linear block codes constructed by pseudo-random parity check matrices. These codes are powerful in terms of error performance and, especially, have low decoding complexity. While infinite-length LDPC codes approach the capacity of communication channels, finite-length LDPC codes also perform well, and simultaneously meet the delay requirement of many communication applications such as voice and backbone transmissions. Therefore, finite-length LDPC codes are attractive to employ in low-latency communication systems. This thesis mainly focuses on the bandwidth-efficient communication systems using finite-length LDPC codes. Such bandwidth-efficient systems are realized by mapping a group of LDPC coded bits to a symbol of a high-order signal constellation. Depending on the systems' infrastructure and knowledge of the channel state information (CSI), the signal constellations in different coded modulation systems can be two-dimensional multilevel/multiphase constellations or multi-dimensional space-time constellations. In the first part of the thesis, two basic bandwidth-efficient coded modulation systems, namely LDPC coded modulation and multilevel LDPC coded modulation, are investigated for both additive white Gaussian noise (AWGN) and frequency-flat Rayleigh fading channels. The bounds on the bit error rate (BER) performance are derived for these systems based on the maximum likelihood (ML) criterion. The derivation of these bounds relies on the union bounding and combinatoric techniques. In particular, for the LDPC coded modulation, the ML bound is computed from the Hamming distance spectrum of the LDPC code and the Euclidian distance profile of the two-dimensional constellation. For the multilevel LDPC coded modulation, the bound of each decoding stage is obtained for a generalized multilevel coded modulation, where more than one coded bit is considered for level. For both systems, the bounds are confirmed by the simulation results of ML decoding and/or the performance of the ordered-statistic decoding (OSD) and the sum-product decoding. It is demonstrated that these bounds can be efficiently used to evaluate the error performance and select appropriate parameters (such as the code rate, constellation and mapping) for the two communication systems.The second part of the thesis studies bandwidth-efficient LDPC coded systems that employ multiple transmit and multiple receive antennas, i.e., multiple-input multiple-output (MIMO) systems. Two scenarios of CSI availability considered are: (i) the CSI is unknown at both the transmitter and the receiver; (ii) the CSI is known at both the transmitter and the receiver. For the first scenario, LDPC coded unitary space-time modulation systems are most suitable and the ML performance bound is derived for these non-coherent systems. To derive the bound, the summation of chordal distances is obtained and used instead of the Euclidean distances. For the second case of CSI, adaptive LDPC coded MIMO modulation systems are studied, where three adaptive schemes with antenna beamforming and/or antenna selection are investigated and compared in terms of the bandwidth efficiency. For uncoded discrete-rate adaptive modulation, the computation of the bandwidth efficiency shows that the scheme with antenna selection at the transmitter and antenna combining at the receiver performs the best when the number of antennas is small. For adaptive LDPC coded MIMO modulation systems, an achievable threshold of the bandwidth efficiency is also computed from the ML bound of LDPC coded modulation derived in the first part

    Rate-Adaptive Coded Modulation for Fiber-Optic Communications

    Get PDF
    Rate-adaptive optical transceivers can play an important role in exploiting the available resources in dynamic optical networks, in which different links yield different signal qualities. We study rate-adaptive joint coding and modulation, often called coded modulation (CM), addressing non-dispersion-managed (non-DM) links, exploiting recent advances in channel modeling of these links. We introduce a four-dimensional CM scheme, which shows a better tradeoff between digital signal processing complexity and transparent reach than existing methods. We construct a rate-adaptive CM scheme combining a single low-density parity-check code with a family of three signal constellations and using probabilistic signal shaping. We evaluate the performance of the proposed CM scheme for single-channel transmission through long-haul non-DM fiber-optic systems with electronic chromatic-dispersion compensation. The numerical results demonstrate improvement of spectral efficiency over a wide range of transparent reaches, an improvement over 1 dB compared to existing methods

    Reliable Physical Layer Network Coding

    Full text link
    When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.Comment: 19 pages, 14 figures, survey paper to appear in Proceedings of the IEE

    Multilevel Coding and Unequal Error Protection for Multiple-Access Communications and Ultra-Wideband Communications in the Presence of Interference.

    Full text link
    Interference is one of the major factors that degrade the performance of a communication system. Various types of interference cause di Kerent impact on the system performance. In this thesis, we consider interference management at the physical layer. In order to enhance the performance, the receiver needs to have the knowledge about the interference. By exploiting the knowledge about interference, such as statistical properties, it can be suppressed to enhance the link quality. This thesis contains two main topics: multilevel coding (MLC) for unequal error protection (UEP) and receiver design for ultra-wideband (UWB) communications to suppress interference. Both topics deal with interference in di Kerent ways, and face di Kerent design challenges. MLC is a way to provide UEP for different streams of information with different levels of importance in a communication system. It combines coding and modulation schemes to optimize the system performance. The idea is to protect each bit in the modulation constellation point by an individual binary code. We designed and analyzed a DS-CDMA system with asymmetric PSK modulation and MLC using BCH codes in an AWGN channel. The analysis includes probability of bit error of the system, and the capacity and throughput of the MLC scheme combined with 8-PSK modulation. The results show that the MLC scheme can have a higher throughput than the regular coding scheme in the low SNR region in the AWGN channel. We also analyzed the performance of UWB communications in the presence of MAI and jamming interference. We considered a nonlinear interference suppression technique for impulse radio based UWB systems in the AWGN channel. The technique is based on the locally optimum Bayes detection (LOBD) algorithm, which utilizes the interference probability density function (PDF) for receiver design. This type of receiver has low complexity, and numerical results show that its performance asymptotically approaches that of the optimum receiver. Lastly, we discussed the implementation of the proposed receiver by adaptively monitor and update the interference PDF. The adaptive LOBD algorithm makes the proposed receiver implementation practical to deal with different types of interference.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75955/1/wangcw_1.pd
    • …
    corecore