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ABSTRACT

Low density parity check (LDPC) codes are linear block codes constructed by pseudo-

random parity check matrices. These codes are powerful in terms of error performance

and, especially, have low decoding complexity. While infinite-length LDPC codes ap-

proach the capacity of communication channels, finite-length LDPC codes also perform

well, and simultaneously meet the delay requirement of many communication applica-

tions such as voice and backbone transmissions. Therefore, finite-length LDPC codes are

attractive to employ in low-latency communication systems. This thesis mainly focuses

on the bandwidth-efficient communication systems using finite-length LDPC codes. Such

bandwidth-efficient systems are realized by mapping a group of LDPC coded bits to a

symbol of a high-order signal constellation. Depending on the systems’ infrastructure and

knowledge of the channel state information (CSI), the signal constellations in different

coded modulation systems can be two-dimensional multilevel/multiphase constellations or

multi-dimensional space-time constellations.

In the first part of the thesis, two basic bandwidth-efficient coded modulation systems,

namely LDPC coded modulation and multilevel LDPC coded modulation, are investigated

for both additive white Gaussian noise (AWGN) and frequency-flat Rayleigh fading chan-

nels. The bounds on the bit error rate (BER) performance are derived for these systems

based on the maximum likelihood (ML) criterion. The derivation of these bounds relies on

the union bounding and combinatoric techniques. In particular, for the LDPC coded modu-

lation, the ML bound is computed from the Hamming distance spectrum of the LDPC code

and the Euclidian distance profile of the two-dimensional constellation. For the multilevel

LDPC coded modulation, the bound of each decoding stage is obtained for a generalized

multilevel coded modulation, where more than one coded bit is considered for level. For

both systems, the bounds are confirmed by the simulation results of ML decoding and/or

the performance of the ordered-statistic decoding (OSD) and the sum-product decoding. It

is demonstrated that these bounds can be efficiently used to evaluate the error performance

and select appropriate parameters (such as the code rate, constellation and mapping) for the
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two communication systems.

The second part of the thesis studies bandwidth-efficient LDPC coded systems that em-

ploy multiple transmit and multiple receive antennas, i.e., multiple-input multiple-output

(MIMO) systems. Two scenarios of CSI availability considered are: (i) the CSI is unknown

at both the transmitter and the receiver; (ii) the CSI is known at both the transmitter and

the receiver. For the first scenario, LDPC coded unitary space-time modulation systems are

most suitable and the ML performance bound is derived for these non-coherent systems.

To derive the bound, the summation of chordal distances is obtained and used instead of the

Euclidean distances. For the second case of CSI, adaptive LDPC coded MIMO modula-

tion systems are studied, where three adaptive schemes with antenna beamforming and/or

antenna selection are investigated and compared in terms of the bandwidth efficiency. For

uncoded discrete-rate adaptive modulation, the computation of the bandwidth efficiency

shows that the scheme with antenna selection at the transmitter and antenna combining at

the receiver performs the best when the number of antennas is small. For adaptive LDPC

coded MIMO modulation systems, an achievable threshold of the bandwidth efficiency is

also computed from the ML bound of LDPC coded modulation derived in the first part.
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1. Introduction

1.1 Digital Communication Systems

The fundamental problem of communications is to reproduce at one point a digital mes-

sage selected at another point as exactly as possible [1]. To solve this fundamental problem,

communication engineers have designed sophisticated systems to transmit messages over

hostile noisy channels. The general block diagram of a digital communication system is

illustrated in Figure 1.1.

Data
Source

Encoder Modulator Demodulator Decoder
Data
Sink

Physical
Channel

ReceiverTransmitter

Figure 1.1 The block diagram of a digital communication system.

At the transmitter, digital messages are processed before they are sent to the physical

channel. The objective of this process is twofold: (i) to choose proper signal waveforms

to avoid bad effects of the physical channel and (ii) to be able to detect these waveforms

easily at the receiver end. At the receiver, a computational algorithm is needed to detect the

transmitted waveforms as precisely as possible with a practical complexity.

In digital communication systems, the modulator is the block that maps the information

to the physical channel. Due to the continuous nature of most physical channels, the mod-

ulator needs to transform discrete waveforms to continuous waveforms that adapt to the

channel. Because the physical channel attenuates the transmitted signal, creates random

noise and presents interference, the continuous waveforms should be chosen to cope with
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attenuation, noise and interference. For example, in mobile wireless communications, the

frequency, phase and bandwidth of the modulated signal are selected properly to reduce the

fading effects of the wireless channel, corruption of random noise and interference among

users. In modern communications, the modulating function should be understood as any

method to efficiently adapt to the channel. For example, these methods may include mov-

ing the signal to high frequency, spreading the spectrum of the signal, modulating the signal

with many carriers or even sending the signal to many antennas.

The demodulator processes the received continuous waveforms that are corrupted by

random factors of the physical channel. Usually, the demodulator tries to replace the re-

ceived continuous waveforms by finite-dimensional vectors to enable the calculation of the

decision variable based on the joint density functions of random variables [2]. In practice,

matched filters are often used in digital communication systems to transform continuous

waveforms to sufficient statistics, i.e., finite-dimensional vectors. These random variables

or sufficient statistics are processed by computational algorithms more easily.

On the other hand, the coding process in digital communications approaches the prob-

lem digitally or in the discrete time domain. The encoder can be divided into two blocks,

namely the source encoder and the channel encoder. In this research, we are only con-

cerned with the channel encoder and shall refer to it simply as the encoder. The encoder

also tries to create waveforms to transmit effectively the information message against ran-

dom factors of the channel as in the modulator block, but this is done in the discrete domain.

The encoder implements this task by inserting redundant information in the message in a

controlled manner. At the receiver, the decoder recovers the original information from the

discrete outputs of the demodulator with the help of this redundant information.

From the above discussion, it is important to emphasize that channel coding and modu-

lation have the same objective of producing the appropriate signal waveforms to cope with

the noisy channel. However, compared to modulation, coding is more flexible in terms of

the performance and processing complexity tradeoff due to working in the discrete time do-

main. In modern communication applications, the two functions can not be separated and

should be considered as an entity. It is sometimes observed that a new modulation scheme
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shows a large gain for the uncoded systems, however, for coded systems, the improvement

does not correspond or even is insignificant [3]. Therefore, performance evaluation of the

whole digital communication system should be carried out instead of separate performance

assessment of the modulation and coding functions. In this thesis, the error performance of

such coded systems is studied.

1.2 Research Motivation

In his landmark paper published in 1948 [1], Shannon proved that the arbitrarily re-

liable transmission over a noisy channel is possible if the information rate is less than a

quantity called the channel capacity. Before his work, people still believed that communi-

cations with arbitrarily small bit error probability can only be achieved with information

rate approaching zero. The work of Shannon suggests that this channel capacity can be

achieved by a very long random code and a maximum likelihood (ML) receiver, that is

the optimum receiver. Although the existence of communication schemes signaling at the

channel capacity is proven, practical solutions to achieve the Shannon limit are still open

over a half of century due to the very high complexity of the maximum likelihood receiver

for long block-length codes.

Recently, there has been a great improvement in coding techniques towards achieving

this limit. The new approach uses pseudo-random codes and suboptimum decoders, called

iterative decoders, instead of the optimum one. Due to this iterative decoding technique,

the performance of coded systems is significantly improved due to the ability to increase

the code length and, simultaneously, still keep a reasonable computational complexity for

the receivers.

In 1993, Turbo code was invented by Berrou, Glavieux and Thitimajshima [4]. This

awkward code is constructed by parallel concatenation of two convolutional codes through

a random interleaver. Iterative decoding is applied in the decoder where the soft output

is exchanged between the two component decoders. The performance of original Turbo

code approaches the Shannon limit within 0.5 dB with this iterative decoding technique.

In wake of Turbo codes, Gallager’s low density parity check (LDPC) codes [5, 6] were
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rediscovered and it was shown that with long block-length codes they also achieve near

Shannon limit performance. Low density parity check codes are linear block codes with

sparse parity check matrices generated randomly and these codes can also be decoded

iteratively. The performance of Turbo codes and LDPC codes with a very long block-

length depends on the convergence of the iterative decoding algorithms. The performance

can be evaluated by either the extrinsic information transfer (EXIT) chart [7] or density

evolution techniques [8].

By using density evolution to optimize the performance of LDPC codes, the authors

in [8–10] found irregular LDPC codes which perform much better than Gallager’s regu-

lar LDPC codes. So far, the best known error control code over additive white Gaussian

noise (AWGN) channels is an irregular LDPC code in [11] whose empirical performance

achieves the bit error rate (BER) of 10−6 within 0.04 dB of Shannon limit with a block

length of 107. Theoretically, the code threshold is within 0.0045 dB of Shannon limit

which can be reached when the block length tends to infinity.

However, this long block length is impractical for applications that require low latency

such as speech or backbone transmissions [12]. For LDPC codes with short and medium

block lengths, the error performance of a LDPC coded system depends on both the conver-

gence property and the Hamming distance spectrum of the code. The convergence property

determines how the performance of the iterative decoder can approach that of the maximum

likelihood decoder. On the other hand, the Hamming distance spectrum of the codes deter-

mines the performance of the ML receiver. For short and medium length codes or finite-

length codes, specifically high-rate codes, the error performance of ML decoder serves as

a lower bound for the iterative decoder’s performance. The convergence of the iterative

decoder’s performance to ML decoder’s performance can still be observed at practical bit

error rate (BER) levels for finite lengths of the codes.

Compared to Turbo codes, LDPC codes are more flexible in construction in terms of the

code rate and other parameters. Moreover, there is an error floor on the error performance

of Turbo codes due to the poor Hamming distance spectra of these codes. On the other

hand, the error performance of LDPC codes does not clearly show an error floor because
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of the good Hamming distance property of the codes. This fact makes finite-length LDPC

codes a good candidate for applications that require very low bit error rate (BER), and

simultaneously, low delay. Another advantage of LDPC codes is the ability to implement

fully parallel decoders thanks to the mechanism of their decoding algorithm. The parallel

iterative decoding algorithms of LDPC codes are easily implemented in VLSI [13]. Due

to these advantages, LDPC codes are proposed for most future data applications such as

wireless, wireline communications and storage systems [12]. Motivated by the successes

and potential of LDPC codes and the technique of iterative decoding, this thesis studies

digital communication systems based on LDPC codes.

In the design of communication systems, engineers try to achieve some targets with

limited resources in order to optimize the economical aspect of the systems and to meet the

demands of a given application. Usually, the targets are conflicting and there are trade-offs

among them. Some common objectives of the design can be summarized as follows: (i) to

obtain the highest reliability, i.e., the lowest error probability, with a limited transmission

power; (ii) to simplify the processing at both the transmitter and the receiver, but still pro-

vide good performance; and (iii) to achieve the highest data rate with a constraint on the

available bandwidth. As discussed before, the LDPC codes that are chosen to study provide

good solutions to offer the highest error performance with the constraints on the average

power, computational complexity and delay. Other constraints such as the bandwidth and

data rate can be more easily manipulated by the modulation function. In practice, since the

encoders and the decoders for various purposes are often packaged on VLSI with a given

set of parameters [13], communication engineers need to properly choose the modulation

techniques to meet the requirement of a specific system. In this thesis, a number of com-

munication systems are investigated with LDPC codes and different modulation schemes,

especially the bandwidth-efficient ones. This is important because bandwidth is a scarce

and very expensive resource in wireless communications.

In all bandwidth-efficient coded communication systems, the coded bits (that are en-

coded by an encoder or even several encoders) are grouped and mapped to a continuous

electrical signal waveform, called a symbol. The set of these symbols forms a constellation
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and the number of the symbols is the size of the constellation (which is often more than

two). Because a number of bits is transmitted over one signal interval instead of one bit,

the bandwidth is more efficiently utilized. At the receiver, the likelihood ratios (or the soft

estimations) of the coded bits are computed by the demodulation block. Evaluating the

performance of the systems under ML decoding is carried out by considering the whole

sequence of transmitted symbols.

For wireless communications, the channel is time-varying and experiences fading. Typ-

ically the modulation function tries to combat the bad effect of wireless channels in dif-

ferent ways. Various modulation techniques have been developed for different scenarios

according to the parameters of the wireless channels and the application, such as the coher-

ence time, delay, reliability requirement and the number of equipped antennas. For exam-

ple, for fixed wireless channels, the channel state information (CSI) changes very slowly

and can be easily estimated at the receiver and sent back to the transmitter. Based on the

feedback information, the modulation block can change the constellation size, i.e., the date

rate of the system, to adapt to the condition of the channel. However, for mobile wireless

channels, this technique might not be applicable and other bandwidth-efficient modulation

techniques such as using multiple transmit and receive antennas can be considered. When

a system is equipped with multiple antennas at the transmitter and the receiver, there are

many propagation paths from the transmitter to the receiver. If the distances among the

transmit antennas and among the receive antennas are large enough, the fading coefficients

of the paths are independent. A signal symbol in this system can be spread over indepen-

dent fading paths and detected properly at the receiver. When a path is in deep fade (i.e.,

the path gain is very small), other paths are likely still good, hereby maintaining the quality

of the transmission.

The schemes chosen to study in this thesis are for the popular scenarios of wireline and

wireless communications. Since the systems based on infinite-length LDPC codes were

intensively investigated in [14, 15], the bandwidth-efficient coded communication systems

that are based on LDPC codes of finite block-lengths are the focus of this thesis. The main

objective is to evaluate the bit error rate (BER) performance of various bandwidth-efficient
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LDPC coded communication systems. BER is the most common criterion for performance

evaluation of a communication system. Although frame error rate (FER) or block error rate

(BLER) can also be used, they are more suitable for data applications in which automatic

retransmission request (ARQ) is incorporated.

1.3 Thesis Outline

This thesis includes seven chapters. The first chapter gives an introduction to the digital

communication systems, the motivation and the outline of the thesis.

In Chapter 2, the background of error control coding and LDPC codes are presented.

The relevant concepts introduced in this chapter are helpful for the exposition of subsequent

chapters.

The LDPC coded modulation is studied in Chapter 3. The bandwidth-efficient coded

modulation scheme in this chapter is a basic scheme in which a group of coded bits of one

LDPC encoder is simply mapped to a constellation symbol. This scheme is a natural ap-

proach for block coded modulation. In context of LDPC codes, this scheme corresponds to

the bit-interleaved coded modulation (BICM) with convolutional codes [16,17]. The BICM

scheme based on LDPC codes does not need an interleaver between the LDPC encoder and

the modulator due to random construction of LDPC codes. Our main contribution in this

chapter is the derivation of an upper bound for the error performance of the ML receiver.

The union bound is compared with simulation results of two different iterative demodu-

lation/decoding receivers that are based on sum-product decoding [5, 6] and the ordered

statistic decoding (OSD) [18] with different mappings, constellations, and code lengths

over additive white Gaussian noise (AWGN) and fading channels. For medium length

codes, the performance of the iterative demodulation/sum-product decoding is close to the

performance of the ML decoding at low BER, especially for the system with high-rate

codes and high-order modulation. The union bound is also derived for the frequency-flat

Rayleigh fading channels when the channel state information (CSI) is known at the re-

ceiver. For short length codes, the performance gap between the sum-product decoder and

the ML decoder suggests the application of a better decoding algorithm. The computa-

7



tional complexity of OSD is relatively reduced compared with the ML decoding, although

its performance is still close to the performance of ML decoding. In this work, the OSD

algorithm is also considered for coded modulation systems. For a large constellation, the

iteration between the demodulation and OSD decoding improves the error performance of

the system. The error performance of the iterative demodulation/OSD is very close to that

of ML decoding for coded modulation system with Gray mapping. Compared to iterative

demodulation/sum-product decoders, the receiver based on OSD outperforms for short-

length codes, although its complexity makes it impractical for medium length codes. For

fading channels, the iterative receiver based on OSD also shows a performance near the

ML performance for the short-length codes.

Chapter 4 studies multilevel coded modulation schemes based on LDPC codes. These

systems are bandwidth-efficient coded modulation systems proposed in [19]. In these sys-

tems, the data stream is divided into substreams and these substreams are separately en-

coded before they are mapped to the same signal constellation. This chapter investigates

the generalized multilevel coded modulation with multistage decoding, where finite-length

LDPC codes are used as component codes and where the coded bits of each component

code are mapped to more than one labelling bits of the constellation symbols. The union

bound on the bit error probability for each decoding stage is derived. The bounds, obtained

for both additive white Gaussian noise (AWGN) and Rayleigh fading channels, are applica-

ble for any code rate, constellation and mapping. The tightness of the bounds is verified by

simulation results of ordered statistic decoding (OSD) and sum-product decoding of LDPC

codes. The bounds are useful to benchmark the performance and to select the appropri-

ate parameters of multilevel coded modulation systems in order to provide unequal error

protection of different data streams.

In Chapter 5, LDPC coded unitary space-time modulation systems are investigated.

These systems use multiple transmit and multiple receive antennas (multiple-input and

multiple-output or MIMO). For MIMO channels, space-time codes are widely studied with

the assumption that the channel coefficients among different pairs of transmit antennas and

receive antennas are independent and known to the receiver [20–22]. However, for many
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mobile communication channels, the CSI of MIMO channels is difficult to estimate. In

this case, a class of signal constellations, known as unitary space-time constellations, is the

most suitable modulation for MIMO channels [23, 24]. In Chapter 5, error performance of

non-coherent LDPC coded unitary space-time modulation systems is studied. A bound on

the performance is derived for the systems built from finite-length LDPC codes and unitary

space-time constellations. The analytical derivations are substantiated by simulation results

of OSD and sum-product decoding.

Chapter 6 presents adaptive coded modulation systems based on LDPC codes over

MIMO channels [25]. These systems are variable-rate systems in which the CSI is known

at both the receiver and the transmitter. Therefore, the data rate or the bandwidth efficiency

and the transmitted power can be dynamically adapted to the conditions of the wireless

channel. For these adaptive modulation systems, three diversity schemes over the MIMO

channel are investigated. One scheme is based on optimum beamforming at both the trans-

mitter and the receiver. Two other schemes are based on antenna selection at the transmit-

ter. In the scheme that is based on transmit beamforming, the bits are loaded to the parallel

eigen-subchannels. The schemes based on transmit antenna selection are also chosen for

investigation because these schemes reduce the required feedback information of the chan-

nel state information. The spectral efficiency of the LDPC coded system is computed based

on the simulation results of the iterative demodulation/sum-product decoder and the per-

formance bound of the ML decoder derived in this thesis. The spectral efficiency of the

systems based on the ML bound is called the achievable rate threshold. This rate threshold

can be achieved by a decoder whose performance approaches that of the ML decoder. The

results show the superiority of the scheme with antenna selection at the transmitter and

antenna beamforming at receiver when the number of antennas is small.

Finally, the conclusions are given in Chapter 7. Further research problems and topics

also are presented in this chapter.
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2. Background of Error Control Coding and LDPC
Codes

The objective of this chapter is to introduce the basic concepts of error control coding

in general and LDPC codes in particular. These concepts serve as background material

for subsequent chapters. The maximum likelihood (ML) decoding and the sum-product

decoding are presented for general codes and LDPC codes. Issues affecting the error per-

formance of LPDC codes under the ML and sum-product decoders, such as the distance

and convergence properties, are also discussed.

2.1 Error Control Coding

As mentioned before, the main function of digital communications is to transmit digital

messages over a noisy channel as reliably as possible. Consider a channel that has a certain

bandwidth W starting at zero frequency (i.e., a baseband channel), and this channel is used

for a duration T . It means that arbitrary signal functions of time can be used if their spectra

lie entirely within the band W and their time functions lie within the interval T . Although

it is not possible to fulfill both of the above conditions on bandwidth and duration exactly,

one can choose functions that are very small outside the interval T , and simultaneously,

their spectra are kept within the band W . This fact is due to the well-known sampling

theorem which can be stated as follows:

Theorem [26]: If a function f(t) contains no frequencies higher than W Hz, it is com-

pletely determined by giving its ordinates at a series of points spaced 1/(2W ) seconds

apart.

The theorem can be intuitively interpreted as follows: If f(t) contains no frequencies
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higher than W , it cannot change to a substantially new value in a time less than one-half

cycle of the highest frequency. Thus, any function f(t) can be specified by 2TW real

numbers or a point in a 2TW -dimensional Euclidean space.

From the viewpoint of Euclidean signal space, one can say that a transmission scheme,

designed to transmit digital messages of K information bits, is a mapping from a set of 2K

K-tuples to 2K signal points in the 2TW -dimensional signal space. In this way, the design

of a digital communication system is simplified to a problem that can be considered to be

totally in the discrete domain.

However, when the time-bandwidth product WT is large, the number of dimensions

to represent f(t) is very large. It means that the signal design problem is both complex

at the transmitter and also very complex at the receiver since detection requires computing

in the large-dimensional space. In most digital communication systems, to overcome the

above complications, the signal design problem at the transmitter is separated into two

steps known as channel coding and modulation as shown in Fig. 1.1. An intermediate

signal space of N dimensions is used for this separation. The K-tuple is first mapped to

a digital message of N bits, i.e., an N -tuple. Then, this N -tuple is mapped to a function

f(t) in the 2TW -dimensional space. In practice, the second mapping is often a simple rule,

hence, the performance of the system strongly depends on the first step, i.e., the channel

encoder.

A binary (N,K) block code C is often used to denote the mapping from a K-tuple of

information bits to the N -tuple, called the codeword. The code C can be described as:

C(N,K) = {x1,x2, ...,x2K}, xi ∈ {0, 1}N , 1 ≤ i ≤ 2K . (2.1)

The ratio Rc = K/N is called the code rate. In the system illustrated in Fig. 1.1, the coded

bits are processed by the modulation block. The simplest rule for modulation is binary

phase-shift keying (BPSK), where coded bits are simply mapped to two antipodal sinusoids

of duration T/N . When this BPSK modulation is employed, the pair of the modulator and

the demodulator can be modeled by a discrete channel for the design of channel coding.

When the physical channel is AWGN, this discrete channel is simply a discrete memoryless
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channel (DMC). The error correction capability of different channel coding schemes can

be evaluated over this DMC.

2.1.1 The Coding Theorem

When one considers the error performance of digital communication systems, the cod-

ing theorem due to Shannon [1] is one of the most general forms of the error performance

evaluation and needs to be understood. The coding theorem can be stated as follows.

Theorem [1]: Associated with each discrete memoryless channel (DMC), there is a

channel capacity C > 0 with the following property: For any ε > 0 and R < C, there exist

a coding scheme of data rate R and a decoding algorithm such that the probability of error

is less than ε.

For a bandlimited AWGN channel, this channel capacity is computed as follows [1]:

C = W log

(
1 +

P

N0W

)
(2.2)

where P is the average power of the received signal, W is the bandwidth of the channel

and N0 is the one-sided power spectral density of the noise. This capacity can be achieved

by an infinite-length random code, where 2K codewords are randomly chosen from 2N N -

tuples and N is very large. However, for practical systems, the length of the code cannot

be infinite and is restricted by the delay requirement of the systems.

For codes of finite length N , a more general form of the coding theorem for the DMC

can be restated as follows.

Theorem [27]: The error probability for a code of block length N is upper bounded by:

Pe ≤ e−NE(R) (2.3)

where R is the data rate (bit/sec) that can be computed from the code rate Rc, and E(R) is

called the channel reliability function.

The function E(R), illustrated in Fig. 2.1, is a convex, decreasing and non-negative

function for 0 ≤ R ≤ C. The original Shannon’s coding theorem can also be obtained

by observing this function. When the data rate R approaches the channel capacity C, the
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Figure 2.1 The channel reliability function E(R).

reliability function decreases to zero. It follows from (2.3) that one should increase the

code length N to infinity to make the error probability arbitrarily small at the data rate

equal to the channel capacity. Beside the channel capacity C, some other parameters of the

channel, for example the cut-off rate R0, can be related to the reliability function E(R). As

illustrated in Fig. 2.1, the cut-off rate R0 is the rate at which the tangent to E(R) of slope

−1 intersects the R axis. The quantity R0 shows how difficult to approach the channel

capacity C.

This general form of coding theorem is derived in [27] by averaging the performance of

the ensemble of random codes. This derivation can also be used as a guideline to analyze

the error performance of coded communication systems.

2.1.2 The Optimum Decoder

The coding theorem is proved with the assumption that the optimum decoder, i.e., the

optimum algorithm to detect the codewords, is used. The optimum decoder is based on

the maximum a posteriori probability (MAP) criterion to minimize the error probability

of each bit (bit-MAP criterion) in the information massage. However, the decoder works

with codewords, and it is often based on the codeword maximum a posteriori criterion

(codeword-MAP criterion) whose performance is very close to the performance of the bit-

MAP criterion.
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Consider the binary block code C(N,K) as described in (2.1). Suppose that the code-

word xi is transmitted over a given channel and the received word is y. The codeword-MAP

decoder chooses xMAP
i to maximize the following a posteriori probability:

xMAP
i = arg max

x∈C
Pr(x = xi|y) (2.4)

The a posteriori probability Pr(x = xi|y) is related to the probability density function

p(y|x = xi) by Bayes’ rule as [28]:

Pr(x = xi|y) =
Pr(x = xi)p(y|x = xi)

p(y)
(2.5)

The specific form of the density function p(y|x = xi) depends on the channel model.

For example, p(y|x = xi) is a multi-dimensional Gaussian distribution if the channel is

AWGN.

On the other hand, the maximum likelihood (ML) decoder identifies the codeword xi

that maximizes p(y|x = xi), i.e.,

xML
i = arg max

x∈C
p(y|x = xi) (2.6)

It is obvious from (2.4), (2.5) and (2.6) that if all the codewords are equally likely, i.e.,

Pr(x = xi) = 1
2K , then ML decoder and codeword-MAP decoder are equivalent. The

above discussion of the optimum decoders is also proper for communication schemes in

which x is a sequence of symbols instead of bits.

If the structure of a given code is not considered or not available, one needs to com-

pute p(y|x = xi) for every codeword in order to implement (2.6). Note that, the number

of codewords, 2K , is very large, even when the number of information bits, K, is rela-

tively small. Therefore, the computational complexity of the ML decoding is very high and

impractical for most practical codes.

Suboptimum decoders use different algorithms to approximate the optimum decoders.

These algorithms have lower computational complexity than that of the optimum decoders.

Therefore, the suboptimum decoders are widely used in practice due to their economical

advantage.
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2.1.3 Practical Codes and Decoding Complexity

In the previous subsections, the coding theorem and the optimum decoders are dis-

cussed for random codes whose codewords are randomly chosen from the code space.

However, the computational complexity of the optimum decoders is extremely high for

random codes due to non-structured property of these codes. In practice, the codes are con-

structed by certain rules. The decoding algorithms use information from the construction

rule to reduce the necessary computation to detect the codewords. Practical codes are often

named by their construction rules.

From the viewpoint of code construction, the principle of coding is the addition of

redundant bits. Hence, the most important parameter of a code is the code rate because it

determines the amount of redundancy in the code. From the economical aspect, the code

rate should be as high as possible. However, the performance of a code is reduced when

the code rate increases. A trade-off between the code rate and performance needs to be

decided according to the requirements of a specific application. Naturally, the most simple

code, is a repetition code in which the information bits are repeated exactly. This code is

good in terms of complexity, but it is bad in terms of performance because it only achieves

arbitrarily small bit error probability when the rate reduces to zero by increasing the length

of the codeword. Coding is time diversity, so that the longer the length of a codeword is,

the better the error performance becomes. Here, the information of a bit is diverted in the

time domain to every coded bit so that the information can be hidden from the attack of the

random noise.

Although a code is always expected to have good performance, the decoding complex-

ity is also an important criterion in practice, especially for long codes. For example, repeti-

tion codes are bad codes in terms of performance, but they are simple in both encoding and

decoding. This is why these codes are sometimes used in practice. Random codes are good

codes as Shannon proved, however, these codes are impractical because they can only be

decoded by the ML decoder that compares the received sequence to every codeword. This

decoder requires a computational complexity that is exponential in block length, i.e., the

cost of the system is very high.
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The most popular practical codes are algebraic block codes and convolutional codes.

These codes can be seen in most recent communication and storage systems. However, it is

very likely that the powerful pseudo-random codes will be used in the future applications

[29].

Algebraic codes include linear block codes such as cyclic block codes and BCH codes.

The decoding of these codes is often based on hard-decisions on the received words. They

were appropriate for the era when powerful computational circuits were very expensive.

The best known algebraic codes are Reed-Solomon codes, which are BCH codes based on

Galois field 2q. Recently, some soft decoding algorithms have been developed to decode

Reed-Solomon codes [30–32]. However, the complexity of these algorithms is still high

when the length of the codes increases.

An important subclass of block codes are the linear block codes. Since many concepts

of linear block codes are used for LDPC codes, an example of a simple linear block code,

the (7,4) Hamming code, is introduced next in order to illustrate these concepts.

A binary block code is linear if and only if the modulo-2 sum of two codewords is also

a codeword. The codewords of the linear block code C(N,K) are generated by a generator

matrix G, where the rows of G are linearly independent:

x = u · G (2.7)

The first practical error correcting codes were Hamming codes, invented by Hamming [33].

The generator matrix of the simplest Hamming code, the (7,4) Hamming code, is as fol-

lows:

G =




1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1




(2.8)

Using the above generator matrix, all 16 codewords in the (7,4) Hamming code are listed

in Table 2.1 together with the corresponding information vectors.

Each linear block code has a parity check matrix H that is often used in the decoder.
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Table 2.1 The (7,4) Hamming code.

Information (u) Codeword (x = u · G)
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
1 1 0 0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0 0 1 0
1 0 1 0 0 0 1 1 0 1 0
0 1 1 0 1 0 0 0 1 1 0
1 1 1 0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 1 0 1 1 1 0 0 1
0 1 0 1 1 1 0 0 1 0 1
1 1 0 1 0 0 0 1 1 0 1
0 0 1 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 1
0 1 1 1 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1

The valid codewords satisfy:

x · HT = 0 (2.9)

The parity check matrix H is related to the generator matrix G by G ·HT = 0. The parity

check matrix of the above (7,4) Hamming code is as follows:

H =




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1


 (2.10)

An important parameter of block codes is the minimum Hamming distance among the

codewords. For example, the minimum Hamming distance of the above (7,4) Hamming

code is 3, which can be easily verified from Table 2.1. Note also that for a linear block

code, the minimum Hamming distance is also the minimum Hamming weight among all

codewords. Coding researchers try to design algebraic codes with a large minimum Ham-

ming distance in order to improve the error performance of the codes under the ML decoder.

However, some recent results of coding theory prove that the minimum Hamming distance

is not a sufficient criterion for very long codes [29, 34, 35].
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Convolutional codes are constructed based on the approach of linear systems. The

transmitted bit stream is a convolution of the information bit stream with a linear filter in

Galois field 2. The impulse response of this filter (also known as the shift register) can be

finite or infinite, depending on whether there is a feedback connection. If there is feedback,

the convolutional codes are called recursive convolutional codes. Figure 2.2 shows the

diagram of a feedforward convolutional encoder of rate 1/2 for the illustration purpose.
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Figure 2.2 The diagram of a nonsystematic convolutional encoder with rate 1/2 and
memory length 3.

Convolutional codes are often decoded by the Viterbi algorithm, which is the ML de-

coding algorithm implemented on a trellis diagram. Unlike block codes, a convolutional

code with a given generator polynomial has a fixed minimum Hamming distance even

when the length of codewords increases. Performance of the convolutional codes can only

approach the Shannon limit when the memory length of the shift register increases [35].

However, the computational complexity per bit of the Viterbi decoder increases exponen-

tially with the memory length.

A solution to increase the length of codes and still keep the low computational com-

plexity is concatenation [36]. Before the invention of Turbo codes, the best known code is

a concatenated code used for the Galileo spacecraft [29, 34]. In this code, a convolutional

code of memory length 15 is used as the inner code and a Reed-Solomon code is used as the

outer code. Decoding of this code requires a room full of special hardware. In the future

systems, the above coding scheme shall be replaced by Turbo codes or Turbo-like codes.
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2.1.4 Turbo Codes and Turbo-like Codes

The invention of Turbo codes triggered a revolution in channel coding techniques as

well as digital communications. The idea of Turbo codes is now applied for many iterative

communication systems. Thus, Turbo codes are described and their principles applying to

Turbo-like codes are introduced in this subsection.

Turbo codes are parallel concatenated codes. The new ideas in Turbo codes are (i) using

a random interleaver between the two component convolutional codes in the encoder and

(ii) applying an iterative soft decoding algorithm in the decoder. With this code construction

and decoding structure, Turbo codes can be decoded with linear complexity per bit and

achieve a near Shannon limit performance [4].

In the decoder of original Turbo codes, the BCJR algorithm (also known as the backward-

forward algorithm or symbol-by-symbol MAP algorithm) [37] is used for each convolu-

tional code to calculate the soft a posteriori probability of each bit. The soft output of one

component convolutional decoder, often called the soft-input soft-output (SISO) decoder,

is fedback to the other component decoder. Since the complexity of the BCJR algorithm

is twice the complexity of the Viterbi algorithm, it was rarely used in the convolutional

decoders previously. As illustrations, Figures 2.3 and 2.4 show the block diagrams of the

encoder and the decoder of the original Turbo code, respectively [4].

Due to the outstanding performance of Turbo codes, a class of Turbo-like codes has

been discovered or rediscovered. They include low density parity check codes, repeat ac-

cumulated codes [38], Turbo product codes [39]. These codes have the following common

properties:

• Performance is near Shannon limit.

• Decoding complexity is linear with the code length.

• Soft-decision decoding is used.

• Suboptimum, but high performance iterative decoding is used.
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Figure 2.3 Block diagram of the original Turbo encoder.

Figure 2.4 The basic structure of the Turbo decoder.

• Can be represented on a graph.

The above codes can be very long in order to approach the Shannon limit, thanks to the

constant decoding complexity per bit of the suboptimum iterative decoder. Since the code-

words are scattered in a huge space, the number of errors occurring due to the noise effect,

which exceed the borders of the decision regions, is relatively smaller than the number of

errors due to the suboptimum decoder.

By the last property, Turbo-like codes are sometime called codes on graph. Among
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these codes, low density parity check codes are the most flexible in construction and they

can be easily optimized to achieve good performance in various communication channels.

2.2 Low Density Parity Check (LDPC) Codes

2.2.1 Structure of LDPC Codes

Low density parity check codes (LDPC) are linear block codes with sparse parity check

matrices. The original Galager’s LDPC codes are called regular LDPC codes in which the

number of 1’s is the same in every row and every column [5]. The following matrix is the

parity check matrix of a rate-1/2, length-10 regular LDPC code:

H =




1 1 1 1 0 1 1 0 0 0

0 0 1 1 1 1 1 1 0 0

0 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 0 1 1 1

1 1 0 0 1 0 1 0 1 1




(2.11)

In this matrix, the number of 1’s in each row is 6 and the number of 1’s in each column

is 3. This parity check matrix is not very spare because the code is still short. This code

can be presented by a bipartite graph as in Figure 2.5. In this graph, each left node, called

a variable node, represents a bit of the codeword. Each right node, called a check node,

represents a parity check bit. The number of variable nodes corresponds to the number of

columns in the parity check matrix H, while the number of check nodes corresponds to the

number of rows in H. Edges connect the variable nodes to the check nodes according to the

parity check matrix H.

If the number of edges emanating from a variable node is called variable node degree

dv and the number of edges emanating from a check node is called check node degree dc,

then the rate of the (dv,dc) regular LDPC code is Rc = 1 − dv

dc
. The number of 1’s in the

parity check matrix H is N · dv, while the total number of elements in H is N 2 · Rc, where

N is the length of the code. Obviously, when N increases, the number of 1’s increases

linearly and the total number of elements increases quadratically. Hence, the parity check

matrix is sparse with large N .
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Figure 2.5 The bipartite graph of a regular (3,6) LDPC code of length 10, rate 1/2.

The sparse characteristic of the parity check matrix is important, because the number

of 1’s presents the number of relations between a variable node and a check node. Since

the decoder uses these relations to decode, this quantity determines the complexity of the

decoder.

Irregular LDPC codes are LDPC codes that have nodes with different degrees. The de-

grees of the variable nodes and the check nodes are chosen according to some distribution.

For compact description, the degree distribution is often presented in polynomial form. The

variable node degree distribution is denoted by λ(x) and it can be expressed as:

λ(x) =
dv∑

i=2

λix
i−1 (2.12)

where, λi is the fraction of edges emanating from variable nodes of degree i and dv is
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the maximum variable degree of the irregular LDPC code. Note that the coefficient λi

is associated with xi−1, rather than xi. Similarly, the check node degree distribution is

denoted by ρ(x) and can be expressed as:

ρ(x) =
dc∑

i=2

ρix
i−1 (2.13)

where ρi is the fraction of edges emanating from check nodes of degree i and dc is the

maximum check degree. For example, the degree distributions of the previous (3,6) regular

LDPC code are λ(x) = x2 and ρ(x) = x5. With this presentation, the number of variable

nodes of degree i of the (λ, ρ) irregular LDPC code of length N is

N
λi/i∑
j≥2 λ/j

= N
λi/i∫ 1

0
λ(x)dx

. (2.14)

The total number of edges emanating from all variable nodes is

E = N
∑

i≥2

λi∫ 1

0
λ(x)dx

= N
1∫ 1

0
λ(x)dx

. (2.15)

The quantity E can also be expressed in terms of the total number of check nodes M as:

E = M
1∫ 1

0
ρ(x)dx

. (2.16)

The relation between M and N is

M = N

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

. (2.17)

Assuming that all these check equations are linear independent, the design rate is equal to

r(λ, ρ) =
N − M

N
= 1 −

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

. (2.18)

For a given length and a given degree distribution, there is a set of codes, called an ensemble

of codes. The concentration theorem in [8, 40] proves that the performance of all codes in

an ensemble with very long length is close to an average performance. Therefore, the

design of LDPC codes that can approach Shannon limit is equivalent to finding a degree

distribution of the ensemble.
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2.2.2 Sum-Product or Belief Propagation Decoder

The sum-product decoding is also known as belief propagation decoding. The term

“belief propagation” was coined by researchers in the artificial intelligence community

when they studied Bayes networks where many random events are correlated by a network

topology. The problem is to find the probability of an event when other events are known

with given probabilities. This problem is called “inference”. It is solved by calculating

a certain marginal probability from the joint probability density function of all random

variables corresponding to the events. For small Bayes networks, the marginalization can

be easily done by a summation over states of other random variables. However, when the

number of random variables is large, this solution is impossible because the number of

terms in the summation grows exponentially with the number of variables. The principle

of belief propagation is to transmit “belief” according to edges of the Bayes network. This

way, belief propagation can compute the marginal probabilities, at least approximately,

with a complexity that grows only linearly with the number of random variables in the

system. Here, the artificial intelligence community prefers the term “belief” to the term

“probability” because they define probability as the “degree of belief” [29, 41].

When researchers in the communications community study error control coding and

digital communications they met a similar problem. They recognized that the problems

of communications are solved by a variety of algorithms that have the same principles as

belief propagation. They call the algorithms the sum-product algorithms which includes the

forward/backward (BCJR) algorithm, the Viterbi algorithm, the iterative “turbo” decoding

algorithm, the Kalman filter, and certain fast Fourier transform (FFT) algorithms [42].

The belief propagation or sum-product algorithm can be applied to decode LDPC codes.

In the context of decoding LDPC codes, the sum-product algorithm is best understood as

an iterative message passing algorithm on the bipartite graph. At each half of an iteration,

the extrinsic information or the outgoing messages from a node are calculated based on the

previous messages from the nodes connected to this node and passed along the edges to

the other side of the bipartite graph. Here, the extrinsic information for the other side of

the bipartite graph is understood as the additional part of information that is created from
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outside of the incoming messages. The complexity of this algorithm is a function of the

number of edges, so it is linear with the length of the codewords.

For purposes of this thesis, the messages are log a posteriori probability ratios (LAPPR)

of the variable nodes passed in both directions: from the variable nodes to the check nodes

and from the check nodes to the variable nodes. If xi is the ith bit in a codeword corre-

sponding to variable node vi and yi is the channel output of this bit, then the LAPPR of this

bit or a soft input of the decoder is

log
Pr(xi = 0|yi)

Pr(xi = 1|yi)
. (2.19)

For example, when a coded bit is modulated by binary phase shift keying (BPSK) and

transmitted over an AWGN channel with power spectral density of σ2, the channel output

of the ith bit is:

yi = (2xi − 1) + wi (2.20)

where wi is zero-mean Gaussian random variable with variance σ2. The conditional density

distribution of the channel output is

p(yi|xi) =
1√

2πσ2
exp

[
− 1

2σ2
(yi − 2xi + 1)2

]
(2.21)

If the 0s and 1s in codewords are equally likely, then

log
Pr(xi = 0|yi)

Pr(xi = 1|yi)
= log

p(yi|xi = 0)

p(yi|xi = 1)
= − 2

σ2
· yi. (2.22)

The decoding procedure is based on the soft inputs and proceeds as follows. At a

variable node vi, the outgoing message qij to a given check node cj (that connects to the

variable node vi in the bipartite graph) is a summation of the initial LAPPR qi and the

incoming messages rij′ to the variable node vi, except the incoming message rij from the

check node cj . The flow of an outgoing message at a variable node and incoming messages

that are used to calculate this outgoing message is illustrated in Figure 2.6-(a). At a check

node cj , the outgoing message rij to a given variable node vi is the LAPPR of variable

node vi that is calculated from the incoming messages qi′j to this check node except the

incoming message qij from the variable node vi. Here, the calculation is to find the LAPPR
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of a binary random variable when the LAPPRs of other binary variables are known and

the summation of all binary variables is zero which is known by the parity check function.

The flow of an outgoing message at a check node and incoming messages, that are used to

calculate this outgoing message, is illustrated in Figure 2.6-(b).
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Figure 2.6 The message processing at variable nodes and check nodes.

Mathematically, the steps of the belief propagation algorithm for decoding LDPC codes

can be summarized as follows [5, 6, 14]:

• Initiation: For each variable node vi (i = 1, ..., n), the associated decoder input is set

to the initial LAPPR, qi = log Pr(xi=0|yi)
Pr(xi=1|yi)

, where xi is the value of the ith bit in the
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codeword corresponding to the variable node vi, yi is channel output of the ith bit.

The messages from the check nodes are set to zero in the initiation.

• Variable node processing: For each variable node vi, the outgoing message to the

check mode cj , that is connected to vi, is given by:

qij = qi +
∑

j′∈J(i)\j

rij′ (2.23)

where the set J(i)\j contains those check nodes connected to the variable node vi

except the check node cj . Here, the content of a message is the soft extrinsic proba-

bility of the ith bit in the log domain, hence the summation of the log probabilities is

implemented instead of a multiplication.

• Check node processing: For each check node cj , the outgoing message to the inci-

dental variable node vi is given by:

rij = log
1 +

∏
i′∈I(j)\i tanh(qi′j/2)

1 −∏i′∈I(j)\i tanh(qi′j/2)
(2.24)

where, similarly, the set I(j)\i contains those variable nodes connected to the check

node cj except the variable node vi. The above equation is equivalent to the procedure

that calculates the a posterior probabilities as in [43]. The derivation of (2.24) is

presented in Appendix A. A simple example, that helps to understand (2.24), is also

provided in Appendix B.

• Stopping and decision: After each iteration, the a posteriori probability of the bit xi

is computed as

pi = qi +
∑

j∈J(i)

rij. (2.25)

Then each bit is estimated as

pi ≷x̂i=1
x̂i=0 0 (2.26)

to form x̂ = [x̂1, ..., x̂n]. If Hx̂ = 0, then declare the decoding a success and claim

x̂ is the decoded codeword. Otherwise, iterations are continued by the two previous

steps. If the number of iterations exceeds a pre-specified limit without finding a valid

codeword, declare the decoding failure.
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The procedure to process the detected errors depends on specific applications. If the

feedback link is available, retransmission can be done for non real-time applications. If

retransmisison is impossible, the LDPC codes can be concatenated with an outer erasure-

correcting code [44,45]. Otherwise, the information bits are still obtained from the system-

atic bits for systematic LDPC codes or by a Gaussian elimination for nonsystematic LDPC

codes.

Thus, according to the above procedure, the outgoing message to a given variable node

is the extrinsic LAPPR of this variable node. This is because it does not include the infor-

mation that have passed though this variable node in the case of a cycle-free graph. After

each iteration, the messages are more accurate because they are implicitly updated with

information from more nodes. The structure of nodes, that sends information to a given

variable node after a given number of iterations, shapes a tree as illustrated in Figure 2.7.
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Figure 2.7 The support tree of depth 2 for a regular (dv, dc) LDPC code.

The sum-product algorithm can produce the exact a posterior probabilities of all bits if

the bipartite graph defined by matrix H contains no cycles whose girth is longer than double

of the number of iterations [6,46]. However, when the code length is small and the number

of iteration is large, this may not be secured. Therefore, this sum-product algorithm is only

suboptimal in this case. Coding designers often try to omit the short cycles in the parity

matrix H. This is important in designing short LDPC codes [47].

Some suboptimum message passing algorithms of belief propagation were investigated
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in [8]. These algorithms use discrete levels of the LAPPR instead of the real variables,

hence the computational complexity is reduced. Of course, the error performance is de-

graded moderately. Therefore, the trade-off should be made when one wants to design a

practical decoder.

2.2.3 Distance Property of LDPC Codes and Convergence of Sum-
Product Decoder

Performance of all codes as well as LDPC codes under ML decoding depends on the

Hamming distances among the codewords, i.e., the distance property of the code. When

a codeword is sent over a noisy channel, the received signal can be a point outside the

decision region of the original codeword. It means that the ML decoder makes an incorrect

decision in this case and an error occurs. Thus, the probability of error depends on the size

of the decision regions. The ML criterion is equivalent to the minimum distance criterion.

It means that the ML receiver makes decision to the codeword that is closest to the received

signal. Therefore, the distances among the codewords decide the performance of the ML

decoder.

The distance property of Gallager’s regular LDPC codes is analyzed in [5]. Figure

2.8 shows the bounds on the Hamming distance spectra of (3,6), (4,8), and (5,10) regular

LDPC ensembles of length 1000. The bounds are compared with the Hamming distance

spectrum of a random code which is a binomial distribution. The analysis shows that

LDPC codes have good distance property, i.e., the minimum Hamming distance increases

and the distance spectra of LDPC codes are close to those of the random codes when the

code-length increases. Other analyzes of distance properties for irregular LDPC ensembles

and other regular ensembles are introduced in [48, 49], which provides the bounds on the

Hamming distance spectra of very long codes. For short and medium-length LDPC codes,

searching algorithms can find the first distance terms of the codes more accurately [50,51].

For finite-length codes, the pairs of codewords with the small Hamming distances are

most easily confused by the noisy channel. Hence, the minimum Hamming distance and

some first terms of the Hamming distance spectra play a major role in determining the error

probability of the ML decoder. For long LDPC codes, almost all terms of the Hamming
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Figure 2.8 The normalized Hamming distance spectra of regular LDPC codes and a
random code of length 1000 and rate 1/2.

distances contribute to the error performance of the ML decoder. Evaluation of the ML

performance for long LDPC codes with binary phase shift keying (BPSK) modulation over

AWGN channels is investigated by tangential sphere bounds and Gallager’s bounds in [5,

52–54].

As discussed in the previous section, the LDPC codes are decoded by the sum-product

decoder in practice. Therefore, the performance of these codes under the sum-product

decoding needs to be evaluated. To understand how the performance of LDPC codes

converges under the sum-product decoding algorithm, one needs to look at the decoding

mechanism. After half of an iteration, a bit or a variable node is updated by the extrinsic

probabilities from some check nodes connected to it. These check nodes get information

messages from the other variable nodes from the previous iteration. Thus, after some itera-

tions, many check nodes and variable nodes, that sent information to a given variable node,

construct a tree structure, called a support tree, as shown in Figure 2.7.

If the graph is cycle-free after a given number of iterations, all nodes in the support
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tree are different. Therefore, the random variables corresponding to nodes in a row of the

tree can be considered as independent random variables. Thus, from the initial probability

density function of the variables, the probability density functions of the variables can be

obtained from this tree structure.

Assuming the support tree is cycle-free and the initial probability density functions of

the variable nodes are symmetric and identical, the authors in [8] investigate the evolution

of the densities due to iterations on the support tree and they call it density evolution. With

the assumption of a symmetric channel, they observe the convergence of the log density of

the all-zero codeword at a given noise level and state that this convergence also occurs with

other codewords. Due to computational complexity, the density evolution is determined by

computer.

For an AWGN channel, a given threshold of the noise level for a certain code is obtained

by the density evolution. If the noise level is above this threshold, the density evolution does

not converge and the sum-product algorithm cannot decode. Based on the concepts of the

threshold and density evolution, the performance of very long LDPC codes is evaluated

over various symmetric channels [10, 14]. By combining the density evolution technique

with an optimization technique, called differential evolution, irregular LDPC code ensem-

bles with performance very near Shannon limit threshold are found in [10, 11, 55].

It should also be mentioned here that there is an error floor observed at very low bit

error rates for some specific LDPC codes, especially the algebraically constructed LDPC

codes, under the sum-product decoding [56,57]. This phenomenon is due to low-weight de-

tected errors, which are also called the “pseudo-codewords” on the graph of the code [56].

For these codes, the sum-product decoding is occasionally trapped by these neighboring

pseudo-codewords and cannot converge to the true codewords. Note that, the neighboring

pseudo-codewords on the graph are not the codewords with minimum Hamming weight

and this floor does not relate to the maximum likelihood performance.

When the probability density functions (PDF) of received coded bits are not symmetric

or even i.i.d., which often occurs in communication systems, the density evolution tech-
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nique is impossible to determine due to the complexity. The density evolution progressing

in a support tree is too complicated because the PDFs of the random variables are not the

same (non i.i.d) and a general structure corresponding to different random variables of a

support tree is different for each bit.

Observing the change of one parameter instead of the entire density function after iter-

ations can reduce the computational complexity. The parameter can be the mean, variance,

error probability or a mutual information. Among these parameters, mutual information

seems to be the most accurate statistic [58]. Based on mutual information, a technique

called the extrinsic information transfer (EXIT) chart [7, 59], proves to be efficient in the

analysis by tracking an average mutual information.

Since mutual information is the most robust statistic, in the sense that it can be applied

without change to a widest range of channels, modulations, and detectors, the EXIT chart

technique can be applied not only to analyze LDPC codes but also to analyze most of the

iterative coding systems such as serial concatenated codes, parallel concatenated codes, or

iterative decoding and detection.

Unfortunately, the density evolution and EXIT chart techniques only correctly predict

the convergence of the sum-product algorithm if the length of the LDPC code is assumed

to be infinite. Analyzing the convergence of finite-length codes is still an open problem.

Since this thesis focuses on finite-length LDPC codes, these techniques are not used to

analyze the systems. The convergence of the sum-product decoder to the ML decoder is

only observed and discussed by simulation results.
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3. LDPC Coded Modulation

This chapter studies a bandwidth-efficient coded modulation system. The system in-

cludes an LDPC encoder and a constellation in a 2-dimensional space, where a signal point

in the constellation is represented by the in-phase and quadrature sinusoids. Since LDPC

codes are randomly constructed, this scheme is similar to the bit-interleaved coded modula-

tion (BICM) originally proposed for convolutional codes [16,17]. The error performance of

the system with different receivers is investigated in this chapter. The performance bound

of the ML decoding is derived based on the Hamming distance spectrum of the LDPC code

and the Euclidean distance profile of the constellation. This ML bound is then compared

with the performance of the systems based on the sum-product decoding and the ordered-

statistics decoding (OSD). Various parameters of the systems such as the code rate, the

constellation and mapping are investigated for both AWGN and Rayleigh fading channels.

3.1 Introduction

Combination of channel coding and modulation into one entity achieves a remarkable

coding gain with the same spectral efficiency compared to the scheme that treats channel

coding and modulation separately. Trellis coded modulation (TCM), proposed by Unger-

boeck [60, 61], is the first bandwidth-efficient coded modulation system. The main prin-

ciple of TCM is based on mapping by set partitioning. More specifically, the partitions of

the modulating constellation in TCM are assigned accordingly to the trellis diagram of a

convolutional code in order to increase the minimum Euclidean distance of the code se-

quences. Various methods were developed to improve the performance of TCM, which

includes multiple TCM [62] and higher-dimension TCM [63]. However, the time diversity

in these methods is still limited by the constraint length of the convolutional codes. The
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Turbo-TCM [64] enlarges the time diversity by using a symbol interleaver between two

concatenated TCM components. Moreover, the iterative technique is used at the receiver

to improve the error performance. Nevertheless, TCMs are used only with convolutional

codes, and the technique cannot be applied to block codes such as LDPC codes.

Another coded modulation scheme, called multilevel coded modulation (MLC), was

proposed simultaneously with TCM in [19]. This scheme uses several encoders at the

transmitter and also several decoders at the receiver. This MLC scheme is capable of em-

ploying block codes such as LDPC codes. However, because the structure of MLC scheme

is more complicated due to the use of many component codes, multilevel LDPC coded

modulation system shall be studied in the Chapter 4 after the basic LDPC code modulation

is investigated in this chapter.

More recently, another combined coding and modulation scheme, called bit interleaved

coded modulation (BICM), has been proposed in [16] and investigated in detail in [17].

In these papers, the BICM scheme uses only one convolutional component code. The im-

portant feature is that a bit-wise interleaver is employed between the modulation block

and the convolutional encoder. The results in [16] demonstrates the performance advan-

tage of BICM over TCM over a Rayleigh fading channel. However, the iteration between

demodulation and decoding is not considered in the receiver of [16]. Therefore, Gray

mapping is still considered to be the best mapping for BICM with convolutional codes

in [16, 17]. Recently, BICM schemes with iterative processing between demodulation and

decoding, called BICM-ID, were studied in [65–68]. The results in these papers show that

the error performance with Gray mapping only has the best performance after the first it-

eration. After a few iterations, the performance with other mappings is superior. In [66],

the authors state that the best mapping depends on the number of iterations, the region of

signal-to-noise ratio and the size of the interleaver. In [67], with a careful design of the

interleaver and investigating the bit distance of 8-PSK constellation, the authors show that

the semi set-partitioning (SSP) mapping performs better than both the set-partitioning and

Gray mappings. The BICM-ID with QAM constellation was also investigated in [68]. The

results in the paper show that a random mapping is the best among the number of mappings
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investigated. More recently, the work in [69, 70] presents multi-dimensional mappings for

BICM-ID and shows that a significant performance improvement is obtained with multi-

dimensional mappings. Such performance advantage, however, comes at the price of a

higher-complexity receiver.

BICM using LDPC codes was also investigated in [14, 43]. Although the scheme is

called bit-interleaved coded modulation with LDPC codes, no interleaver is needed be-

tween the encoder and the modulator. This is due to the random construction of LDPC

codes. In other words, there is a built-in interleaver in the parity check matrix of LDPC

codes. Therefore, in this thesis, the bit-interleaved LDPC coded modulation is often called

the LDPC coded modulation. In [14, 43], only BICM schemes with Gray mappings of

signal constellations are considered. With Gray mapping, the inputs of the decoder are

identical and independently distributed (i.i.d.) random variables. Therefore, the irregular

LDPC codes can be optimized by the density evolution technique. BICM-ID scheme with

LDPC codes and Gray mapping is considered in [43]. Different from the case of BICM

with convolutional codes, the result in [43] show that the gain provided by the iterations

between demodulation and decoding is negligible. It is also shown in [43] that BICM

outperforms Turbo-TCM for long codeword lengths. The coded modulation system based

on LDPC codes and BPSK modulation is investigated for an uncorrelated frequency-flat

fading channel in [14, 71], where LDPC codes are optimized for this particular channel to

achieve a better error performance.

The above performance results of LDPC coded modulation are all studied with infinite-

length LDPC codes. Performance of such infinite-length LDPC coded modulation systems

are usually analyzed by the convergence threshold of the sum-product (SP) decoding over

different channels and with different modulation schemes.

However, very long LDPC codes can not be used in low-latency applications such as

speech transmission (for example, the information blocks of 40 to 5114 bits are recom-

mended in 3G wireless communications [72]). For finite-length LDPC codes, the perfor-

mance of the sum-product decoding does not strictly converge around one threshold value

of the signal-to-noise ratio. It means that the water-fall phenomenon on the error perfor-
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mance can not be observed for finite-length LDPC coded communication systems. At high

SNR and low BER, the performance of the iterative sum-product decoding can approach

the performance of maximum likelihood (ML) decoding quite closely. Although the com-

plexity of ML decoding is prohibitive even for short-length codes, the performance of ML

decoding can still be evaluated by bounding techniques [54]. Furthermore, the perfor-

mance of the systems under ML decoding shows the ultimate capability of the systems and

it serves as a lower bound of the performance of sum-product decoding. For a given range

of code-length, the ML bound can be used to estimate the performance of sum-product

decoding.

In this chapter, the upper bounds on the bit error rate (BER) performance of LDPC

coded modulation under ML decoding are studied for both AWGN and Rayleigh fading

channels. To derive the bounds, the Euclidean distance spectrum of the sequences of sym-

bols needs to be computed. Here, the framework of [73], originally proposed to compute

the Euclidean distance spectrum of turbo coded systems, is applied for the LDPC coded

modulation systems under consideration. The tightness of the bounds is verified by simu-

lating ML decoding of a very short code.

Another decoding technique, called ordered-statistics decoding (OSD) [18], is also con-

sidered in this chapter. The OSD algorithm is capable of decoding linear codes such as

LDPC codes. The performance of OSD is close to the performance of ML decoding for the

systems using short codes and BPSK modulation. The disadvantage of the OSD algorithm

is that its computational complexity is not linear in the code length . For LDPC coded

modulation, the log likelihood probability ratios (LLR) are used to compute the reliability

values of the coded bits and to find the closest codeword instead of the received signals

as used in [18]. For the iterations between demodulation and decoding, the SISO-OSD

module has to be carefully devised to produce the soft-output LLR [74].

3.2 System Description

Figure 3.1 shows the coded modulation system under consideration. In this system,

an information sequence of K bits is encoded by an LDPC encoder to produce a code-
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word c of length N bits in the code C. Thus, the code rate is R = K/N . The code C
can be regular or irregular LDPC code and the minimum Hamming distance of the code

is denoted by lmin. Then, every group of q bits in the codeword c is mapped by some

mapping scheme µ to one signal point in the constellation X of size M = 2q to produce

the transmitted signal x = [x1, x2, · · · , xk, · · · , xNs
], where Ns = N/q is the number

of symbols. The modulated signal x is transmitted over a frequency-flat fading channel.

Let h = [h1, h2, · · · , hk, · · · , hNs
] denote the vector of the fading coefficients affecting

the symbols of the transmitted signal x. When the channel is an uncorrelated Rayleigh

fading channel, the fading coefficients in h are independent and identically distributed

(i.i.d.) random variables with Rayleigh distribution. When an AWGN channel is consid-

ered, these coefficients are set to one. After transmission over the fading channel, a noise

vector w = [w1, w2, · · · , wk, · · · , wNs
] is added to the signal vector x to give the received

vector y = [y1, y2, · · · , yk, · · · , yNs
]. Thus, the kth symbol of y can be represented as:

yk = hkxk + wk (3.1)

where wk is a zero-mean complex Gaussian random variable with variance N0/2 per di-

mension. Here, N0 is one-sided power spectral density of the AWGN.

Equation (3.1) represents the discrete model of the received signal. In practice, the dis-

crete received signal y is obtained by a using a pair of matched filters and each component

of y is a complex number, i.e., a pair of real numbers. The task of the receiver is to use y to

decide which codeword was transmitted among all 2K possible codewords. It means that

the K binary bits should be decided based on 2Ns real numbers contained in y. Since the

vector y contains all information about K information bits, it is often called the sufficient

statistics of the received signal as discussed in Chapter 1.

The received vector y can be geometrically represented as a point in a space of 2Ns di-

mensions. For an AWGN channel, the 2K possible transmitted vectors x corresponding to

2K possible codewords can also be represented as 2K points in this 2Ns-dimensional space.

In fact, the received point y is generated from one of the 2K transmitted points and the ef-

fect of AWGN noise. The optimum receiver or the maximum likelihood (ML) receiver

needs to decide one vector among 2K possible vectors to minimize the error probability.
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Figure 3.1 The block diagram of LDPC coded modulation systems (a) with the ML
receiver, and (b) with a suboptimal receiver based on iterative demodula-
tion/decoding.

Since the PDF of the noise is a Gaussian distribution, which is maximum at the mean value

and monotonically decreases with the distance from the mean, the minimum error proba-

bility criterion turns out to the minimum distance criterion. It means that the ML receiver

should select the signal vector x that is closest to y in terms of the Euclidean distance in

the 2Ns-dimensional space. For the information block length K, 2K Euclidean distances

need to be computed and compared for a given received vector y. For a moderate length K,

the computational complexity of this ML receiver is thus very large. Therefore, this ML

receiver can only be implemented or simulated for very short codes. However, the error

performance of this receiver can still be estimated because of its simple decision boundary.

The ML receiver is assumed in this thesis when the performance bound is derived, hence,

the bound is called the ML bound. In practical systems, when the length of the informa-

tion sequence is large, the ML receiver is infeasible prohibited due to its computational

complexity.

A practical receiver includes a demodulator and a decoder as shown in Fig. 3.1-(b). In
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some practical systems, the demodulator implements hard-decision and it outputs q coded

bits computed from yk. The hard-input decoder then detects and corrects errors based on

this demodulated binary sequence. However, there is information loss when this hard-

decision demodulation/decoding process is used. The performance of the system can be

improved by a soft-output demodulator. The outputs of this demodulator contain coded

bits together with the accuracy measures of these hard decisions. Such a demodulator is

described in detail in Subsection 3.2.1. When the output of the demodulator is soft, the

decoder should be a soft-input decoder. The output of the decoder can be hard-decision or

even soft-decision. Following the Turbo principle in decoding Turbo codes [4,75], iteration

is often carried out between the demodulator and the decoder. To implement the iteration

at the receiver of this coded modulation system, the soft-input soft-output (SISO) demod-

ulator and SISO decoder are required. It should be noted that practical receivers, such as

the iterative receivers, are suboptimum and their performance is inferior to that of the ML

receiver.

In this chapter, a practical receiver that includes a SISO demodulator and a SISO LDPC

decoder as shown in Fig. 3.1-(b) is also employed. The SISO demodulator computes the

soft-decisions of the coded bits based on the received signal and the a priori probabilities

from the previous iteration. Then, the soft output of the demodulator is used as the soft input

of the SISO LDPC decoder to generate the new soft output or the a posteriori probabilities

in the next iteration. The extrinsic information is computed by subtracting the a priori

probabilities from the a posteriori probabilities and it is fedback to the SISO demodulator

in the next iteration.

For the receiver that implements iterative demodulation/decoding as described above,

two kinds of a SISO LDPC decoder are considered. The first SISO LDPC decoder is the

sum-product decoder, which is often employed for LDPC codes. Since, the sum-product

algorithm was described in detail in Chapter 2, it is not discussed again here. The second

SISO LDPC decoder under consideration is the SISO ordered-statistics decoder (OSD).

This decoder is applicable for any short linear block codes. A detailed description of SISO

OSD algorithm based on the log-likelihood ratios (LLR) is presented in Subsection 3.2.2.
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3.2.1 The Demodulator

The procedure of the SISO demodulator is summarized as follows [67]. The SISO

demodulator computes a posteriori probabilities of coded bits Pr(ci
k = b|yk) based on the

received signal yk and the symbols in the constellation X . The a posteriori probability of

the kth bit taking the b value is simply a summation of the a posteriori probabilities of

symbols that have label b at this kth position. The a posteriori probabilities of symbols

Pr(xk|yk) can be represented by the a priori probabilities Pr(xk), the a priori probability

density p(yk) and the conditional a priori probability density p(yk|xk) based on the Bayes’s

theorem. The a posteriori probabilities for coded bits are written as:

Pr(ci
k = b|yk) =

∑

xk∈X
i
b

Pr(xk|yk) =

∑
xk∈X

i
b
p(yk|xk) Pr(xk)

p(yk)
(3.2)

where ci
k is the coded bit of codeword c that is mapped to the ith bit of the kth symbol xk,

and b can be two alternative values 0 or 1. The variable X i
b denotes the subset of X which

contains the symbols whose ith labeling bit equals b.

At the first-iteration demodulation, the a priori probabilities Pr(xk) of all the symbols

are equal, i.e., these a priori probabilities are 1/M , where M is the size of the constellation.

From the second-iteration demodulation, the a priori probability Pr(xk) of a particular

symbol is a product of the a priori probabilities of the coded bits mapped to this symbol.

These a priori probabilities of the coded bits are computed from the previous iteration.

That is,

Pr(xk) =

q∏

j=1

Pr(cj
k = cj(xk); I) (3.3)

Here, cj(xk) ∈ {0, 1} is the value of the jth bit of the label of xk, which is determined by

the mapping µ.

The output of the demodulator for the second iteration is the extrinsic probabilities of

the coded bit, i.e., these probabilities are additional information and exclude the a priori

probabilities that are supplied by the previous iteration. Mathematically, these extrinsic

40



probabilities for the second iteration of the demodulator can be computed as follows:

Pr(ci
k = b; O) =

Pr(ci
k = b|yk)

Pr(ci
k = b; I)

=

∑
xk∈X

i
b
p(yk|xk) Pr(xk)

Pr(ci
k = b; I)p(yk)

=

∑
xk∈X

i
b

[
p(yk|xk)

∏
j 6=i Pr(cj

k = cj(xk); I)
]

Pr(ci
k = b; I)p(yk)

(3.4)

For an uncorrelated Rayleigh fading channel, if the receiver knows the channel state

information (CSI), the conditional probability density function p(yk|xk) is computed as

follows:

p(yk|xk) =
1

πN0

exp

[
−|yk − hkxk|2

N0

]
(3.5)

where, recall that, N0/2 is variance of white noise in each dimension. Note that, xk and yk

are complex numbers while the fading coefficient hk is a real number (due to the assumption

of perfect CSI, the phase is perfectly recovered). For an AWGN channel, hk is set to one.

The log likelihood probability ratio (LLR) can be computed as:

LLR(ci
k) = log

Pr(ci
k = 0; O)

Pr(ci
k = 1; O)

(3.6)

Thus, the output of the demodulator is calculated by (3.4), (3.5) and (3.6). Note that, the

PDF p(yk) in (3.4) is often a complicated function, but it is cancelled in the calculation of

the LLR outputs in (3.6).

3.2.2 The Soft-Input Soft-Output OSD Decoder

The ordered-statistics decoder (OSD) is one of the reliability-based decoders for linear

block codes [76]. The first algorithm in this type of decoders is the generalized minimum

distance (GMD) decoder devised in [36]. This decoding approach was later generalized

to Chase’s algorithms [77]. The reliability-based decoders also compute and compare the

distances from candidate codewords to the received signal as in the ML decoder in order

to select the best codeword. However, the reliability of the received coded bits is used

to restrict the search region of the reliability-based decoders. Instead of searching over

all codewords as in the case of ML decoding, the reliability-based decoders only make
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decision on a set of the most possible candidates. These candidates surround the most

reliable candidate. In this way, the complexity of reliability-based decoders is relatively

reduced compared with ML decoding, but the performance is still close to the performance

of ML decoding for moderate code lengths. Different types of reliability-based decoding

use different methods to choose the first candidate and to extend the search region. For

coded modulation systems, the soft-outputs of the demodulator are used to determine the

reliability orders of the candidates as well as the cost functions of the candidates.

The hard-output OSD algorithm makes decisions on a set of codewords devised from

the most reliable independent positions (MRIP) of the received signal and the error patterns

added to these MRIPs. The hard-output OSD algorithm was proposed in [18] for a BPSK

modulation system. The MRIPs are ordered and the cost function of a codeword is directly

computed based on the received signal yk of BPSK modulation. In this section, the MRIPs

are determined and the cost function of a codeword is calculated based on the output LLRs

of the demodulator.

The soft-output OSD decoder [74] is a two-stage decoder. The first stage is a hard-

output OSD decoder. In the second stage, the soft-output of each position is obtained by

a joint estimation between the decided codeword and the closest codeword to the received

signal with an opposite value at this position. This codeword is found by the OSD stages

working on punctured codes of the original code. The details of the hard-output OSD stage

and the soft-output reprocessing stage are briefly presented next.

The Hard-Output Ordered-Statistics Decoding Stage

First, the LLR sequence corresponding to a codeword is re-ordered in decreasing values

of reliability. The code corresponding to this ordering is referred to as C̃. The K most

reliable independent positions (MRIPs) form an information set called the most reliable

basis (MRB). An initial codeword c0 is constructed by making hard decisions of K MRIPs

and re-encoding these K bits. Then c0 is reprocessed as follows [18]:

1. For 0 ≤ j ≤ i,
(

K
j

)
candidate codewords are constructed by adding all possible error

patterns of weight j to the K MRIPs of c0 and re-encoding.
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2. The decoding cost of each constructed codeword is computed by a product of bit

probabilities or a sum of the corresponding LLRs.

3. The candidate with the best cost is chosen by the decoder.

The above decoding procedure is called order-i reprocessing of the hard-output OSD-i

decoder. The decoding cost of a candidate codeword c can be computed as follows:

Lc =
N∑

l=1

(−1)clLLR(cl) (3.7)

If the cost function is calculated based on the cost of the initial codeword c0, the compu-

tational complexity can be reduced by a summation of the costs of bits at positions of 1 in

the error patterns only.
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Figure 3.2 The space of OSD candidates.

Figure 3.2 illustrates the space of OSD candidate codewords. The OSD decoder finds

the best codeword in terms of the cost function among these candidates. The OSD candi-

dates surround the most reliable candidate, i.e., the initial codeword. The computational

complexity of OSD algorithm depends on the order i of OSD and the length K of the

information sequence. The OSD algorithm of order i requires processing of a total of

1 +

(
K

1

)
+ · · · +

(
K

i

)
(3.8)
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candidates to make a decision. The OSD algorithm with order K is the maximum likeli-

hood decoding, which requires the processing of 2K codewords.

The Soft-Output Reprocessing Stage

The soft-output of a coded bit is computed based on a joint estimation of two code-

words, namely, the most likely codeword cML in the code C and the most likely codeword

cj in the subset C(j) of codewords that are different to cML at the jth position. That is,

Lj = (−1)cML,j [L(cML) − L(cj)] (3.9)

The above expression means that the soft estimation of the LLR by this SISO OSD module

is equivalent to that of the max-log-MAP algorithm [78].

To describe steps of the soft-output order-i reprocessing, the following definitions are

required. The error pattern e(j) of C̃ is an error pattern that has el(j) = 1 for l = j and

el(j) = 0 otherwise, 1 ≤ l ≤ K. The values of el(j)’s for K ≤ l ≤ N are determined by

the generator matrix of C̃. The code C̃(j) is a punctured code of C̃ at the jth position. The

codeword cML(j) of C̃ is a codeword obtained by complementing position-j in cML, i.e.,

cML(j) = cML ⊕ e(j).

The steps of the soft-output order-i reprocessing can now be summarized as follows

[74]:

1. Find the most likely codeword cML by the hard-output ordered-statistic decoding

stage.

2. For each bit-j of the most reliable basis (MRB) (1 ≤ j ≤ K):

• Setup the first soft output values of the least reliable positions (LRPs) in the

support of ej based on cML and cML(j).

• Find the most likely codeword c(j) in C̃(j) by a hard-output order-i reprocess-

ing.

• Compute Lj based on cML and c(j).
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• Update the soft output values of the LPRs in the support of cML⊕c(j) with Lj .

3. For each bit-j of the LPRs (K + 1 ≤ j ≤ N), choose the smallest soft output value

associated with each bit-j.

Note that, the generator matrix of C̃(j) needs to be properly derived according to the value

of the jth bit of cML in order to generate the exact punctured code of C̃. Moreover, the

soft-outputs should be re-ordered again to correspond to the original positions.

3.3 Performance Bound of the ML Decoding

In this section, an upper bound on the error performance of the system with ML receiver

is derived. The block diagram of this system is shown in Fig. 3.1-(b). Although this system

might not be practically implemented, its error performance is of interest since it provides

the performance limit for any suboptimum receivers such as the receivers based on the

sum-product decoding or OSD.

3.3.1 Performance Bound for AWGN channels

For the system in Fig. 3.1-(b), the ML decoding makes a decision to the nearest signal

of y. The demapping of the chosen signal to the binary bits is then performed. Note that

the ML decision is carried out in {(R2)Ns} signal space. A codeword error occurs when

the received signal y exceeds the boundary of the decision region of the transmitted signal

x. The bit errors can be computed easily from the codeword errors. Thus the bit error

probability depends on the locations of the signals x in {(R2)Ns}. It is very difficult, if

not impossible, to exactly determine the locations of the transmitted signals because LDPC

codes are constructed randomly. Fortunately, the union bounding techniques only need to

know the Euclidean distance spectrum of the transmitted signals to approximately calculate

the error probability. Note that, the error probability depends not only on the minimum

distance of the signals, but also on the distance spectrum of the signals. Therefore, in order

to apply the union bounds, the Euclidean distance spectrum of the transmitted signals needs

to be computed first.

In [73], the authors developed a procedure to compute the Euclidean distance spectrum
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of Turbo coded modulation systems in order to determine the union bound on the BER. This

method can also be applied for the systems based on linear, randomly-constructed codes

such as LDPC codes. Such an application is considered to evaluate the BER performance of

LDPC coded modulation systems. There are some important differences when the method

of [73] is applied to the systems considered in this section. With a given parity check matrix

H, an LDPC code can be encoded in different ways [39]. This is because different generator

matrices can be found for a given parity check matrix. Therefore, it can be assumed that the

positions of the systematic bits (information bits) are randomly distributed in a codeword.

With this assumption, the bound of the coded bit error probability, rather than the bound of

the information bit error probability, shall be derived. In fact, simulation results also show

that the error probabilities of the information bits and coded bits are approximately the

same. When the union bound of the coded bit error probability is computed, the Hamming

weight spectrum of LDPC codes is used instead of the weight enumerator function of Turbo

codes as in [73].

The bit error probability when a codeword c is selected (i.e., the signal x is transmitted)

can be computed as follows:

Pe,c =
∑

c′ 6=c

Wc,c′

N
Pr (y ∈ Λx′ |x) (3.10)

where c′ is another codeword in C, Wc,c′ is the Hamming distance between the codewords c

and c′ and Λx′ is the decision region associated with signal x′ of the codeword c′. Generally,

the codewords are chosen equally likely, then the average bit error probability of the system

is simply given by:

Pe =
1

2NR

∑

c∈C

Pe,c (3.11)

The union bound can then be written as:

Pe ≤
1

2NR

∑

c∈C

∑

c′ 6=c

Wc,c′

N
Pr(c → c′) (3.12)

where the pairwise error probability Pr(c → c′) ≥ Pr (y ∈ Λx′ |x) is the probability of

deciding on the codeword c′ given that the codeword c was selected at the transmitter side.

Corresponding to each pair of codewords, there is an error sequence e. In essence, (3.12)
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is a sum of the pairwise codeword error probabilities weighted by the Hamming distances

of the codewords. Since LDPC codes are linear codes, the error sequences are also the

codewords. Therefore, the Hamming weight spectra of error sequences are exactly the

Hamming weight spectra of the code.

Due to the randomization in constructing of LDPC codes, it is difficult to determine

the error performance of a given code. Instead of considering a specific code, the error

performance bound is averaged over the code ensemble in which a code is a permutated

version of another code in this ensemble. It means that the columns of a parity check matrix

are permuted to create the parity check matrixes of other codes. In fact, this ensemble

is only a subset of the LDPC ensemble of given check node and variable node degree

distributions. This procedure is necessary in order to apply combinatoric techniques. This

is similar to the case of Turbo codes, where the error performance bound is averaged over

all random interleavers, which essentially correspond to different codes of a Turbo code

ensemble. Thus, the codes of this ensemble are defined by the same graph topology and

have the same Hamming distance spectrum. After averaging (3.12), the average union

bound can be written as follows:

P e ≤ E

[
1

2NR

∑

c∈C

∑

c′ 6=c

Wc,c′

N
Pr(c → c′)

]
(3.13)

For computing the pairwise codeword error probabilities, the squared Euclidean dis-

tance should be known for each codeword pair or each error sequence. The squared Eu-

clidean distance between two codewords are the squared Euclidean distance between the

two symbol sequences corresponding to the two codewords. This Euclidean distance be-

tween the two codewords is simply the sum of the contributed Euclidean distances between

two symbols in each modulation plane. These two symbols are determined by the corre-

sponding bit groups and the mapping rule. Therefore, if there is no difference in the bit

groups, these two symbols are identical and the Euclidean distance between them is zero.

In other words, such bit groups do not contribute to the Euclidean distance between the two

symbol sequences.
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Consider a given error sequence, which is the modulo-2 sum of two codewords. The

Hamming weight of an error sequence is the number of ones in the sequence. For each error

sequence, only pairs of symbols that correspond to the bit groups containing errors (i.e., bits

1) contribute to the total Euclidean distance. Recall that the number of error sequences with

a given weight is determined by the Hamming weight spectrum of the code. However, the

positions of the errors are not determined because of the randomization in creating LDPC

codes. Error sequences of a given weight can be classified to some types of error sequences

according to the number of bit groups with the same weights. For example, in the case of

8-PSK modulation, the weight of a bit group of an error sequence (called error-bit group)

can be 0, 1, 2 or 3. Note that, the bit group of weight 0 does not contribute to the total

Euclidean distance.

Let ni, 0 < i < q, denote the number of error-bit groups of weight i. An error sequence

can then be described by the parameters ni. Let n be the vector that contains these param-

eters. Then n can be referred to as the type of error sequences. Note that, each type of

error sequences can be mapped to different Euclidean distances [73]. Thus, corresponding

to each type n of error sequences, the corresponding Euclidean distance Dn is a random

variable.

After classifying the error sequences, the union bound can be rewritten as:

P e ≤
N∑

l=lmin

Ns∑

n1=0

· · ·
Ns∑

nq=0

l

N
f(n)E

[
Q

(√
D2

n

N0/2

)]
(3.14)

Here, f(n) is the number of error sequences of type n corresponding to a given transmitted

codeword and f(n) is the expected value of this function over the ensemble. The expected

total number of error sequences of type n is 2NRf(n). The function f(n) is computed as

follows:

f(n) = N (l)
Pl,n(

N
l

) (3.15)

In the above equation, N (l) is the number of codewords of weight l, which is also the

number of error sequences of weight l for any transmitted codeword. The quantity Pl,n is

the number of possible cases of error sequences of type n with a weight l. This quantity
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can be computed by the following equation:

Pl,n =





(
Ns

n0, n1, . . . , nq

) i=q∏

i=1

(
q

i

)ni

, if
i=q∑

i=1

ini = l

0, otherwise

(3.16)

Here, the multinomial coefficient

(
Ns

n0, n1, . . . , nq

)
=

Ns!

n0!n1! . . . nq!
is the number of pos-

sible locations of certain type of errors among Ns channel symbols. For the product term,

each coefficient
(

q
i

)
is the number of possible error patterns of a bit group of size q with

i errors. Furthermore, the number of terms in the summation of (3.14) can be reduced by

smaller upper limits. For example, one can use b(l −∑i−1
k=0 knk)/ic as the upper limit for

ni if all the nk with k < i are known.

To compute the average union bound over the random variable Dn, two simplifying

assumptions are needed. The first assumption is that all Ns channel symbol errors are

independent of each other. The second assumption is that all the points in the constellation

are equally likely to be used. Now, the total distance Dn can be computed from the single

symbol error distances Dk that are also random variables as:

D2
n

=

n1+···+nq∑

k=1

D2
k (3.17)

Due to the first assumption, the probability mass function (PMF) of Dn can be computed

from the PMFs of Dk. The PMFs of Dk for a given error-bit group can be computed

from the mapping and the constellation by the second assumption. Thus, the bound can be

rewritten as

P e ≤
N∑

l=lmin

Ns∑

n1=0

· · ·
Ns∑

nq=0

kn∑

j=1

l

N
f(n)pn,jQ

(
∆n,j√
2N0

)
(3.18)

where pn,j = P [D2
n

= ∆2
n,j], j = 1, 2, . . . , kn. Here, kn is the number of distinguishable

Euclidean distances and each distinguishable Euclidean distance has a probability pn,j .

An example is given next to illustrate the procedure of calculating ∆n,j and pn,j . Con-

sider 8-PSK modulation and Gray mapping as shown in Fig. 3.3. Then the random vari-

able Dk can take on one of several values di,h with probabilities pi,h, respectively. Here,
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i, 0 ≤ i ≤ 3, is the number of errors in one bit group and h, 0 ≤ h ≤ hmax, is the num-

ber of possible Euclidean distances. If there is one error (i.e., i = 1) in a bit group, Dk

can take on two values d1,1 =
√

2 −
√

2
√

Es and d1,2 =
√

2 +
√

2
√

Es with probabilities

p1,1 = 8/12 = 2/3 and p1,2 = 4/12 = 1/3, respectively. If there are two errors (i = 2) in

one bit group, Dk can be d2,1 = 2
√

Es and d2,2 =
√

2
√

Es with probabilities p2,1 = 1/3

and p2,2 = 2/3, respectively. Finally, when all three bits are in error (i = 3), the value of

Dk is d3,1 =
√

2 +
√

2
√

Es with certainty. Thus, the PMFs of all Dk’s can be computed.

The random variable D2
n

thus can take on the following values:

∆2
n,j =

q∑

i=1

hmax∑

h=1

ni,hd
2
i,h (3.19)

where ni,h is the number of distances Dk = di,h. Note that 0 ≤ ni,h ≤ ni and
∑hmax

h=0 ni,h =

ni. The probability of D2
n

= ∆2
n,j with a given set of ni,h is simply:

pn,j =

q∏

i=1

(
ni

ni,0, . . . , ni,h

) hmax∏

h=0

p
ni,h

i,h (3.20)

The above procedure shows all the necessary computations to determine the union

bound in (3.18).

Before closing this section, it is appropriate to discuss the tightness of the union bound.

For the LDPC coded modulation systems under consideration, the pair of modulator and

demodulator and the channel form a discrete memoryless channel (DMC) for the coding

and decoding blocks. The union bound of the ML receiver is considered to be tight when

the rate Rs (bits/symbol) of the system is above the cut-off rate R0 (bits/symbol) of this

discrete channel [73, 79].

Here, the cutoff rate R0 is defined as the rate at which the tangent to the reliability

function E(R) of slope −1 intersects the R axis as depicted in Fig. 2.3. The cutoff rate can

partly describe E(R) because it shows how difficult it is to approach the channel capacity.

For an AWGN channel, the cutoff rate R0 corresponding to a given constellation can be

computed by the following equation [80, 81]:

R0 = − log2

(
min
{qi}

M∑

i=1

M∑

j=1

qiqje
−|xi−xj |

2/4N0

)
(3.21)
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Figure 3.3 The Euclidean distances of 8-PSK constellation with Gray mapping.

where {xi} are the symbols of the constellation X . These symbols are transmitted over an

AWGN channel with probabilities {qi}. When the modulation symbols are used with the

same probabilities, (3.21) reduces to:

R0 = − log2

[
M∑

i=1

M∑

j=1

(
1

M

)2

e−|xi−xj |
2/4N0

]
(3.22)
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Thus, a value [Eb/N0]
(∗) can be numerically computed by solving (3.22) when the cutoff

rate R0 is assigned to the data rate Rs . The union bound is considered as a tight bound when

the signal-to-noise ratio is above this [Eb/N0]
(∗). For example, for the coded modulation

scheme with code rate 1/2 and 8-PSK modulation, this [Eb/N0]
(∗) value is 3.28 dB.

3.3.2 Performance Bounds for Fading Channels

The union bound of the BEP for a fading channel is different from that for an AWGN

channel due to the difference in computing the pairwise error probability (PEP). This means

that Equation (3.13) can still be applied for fading channels if the pairwise error probability

in this equation can be computed for fading channels. Such a computation of the pairwise

error probability can be carried out similarly to that for a trellis coded modulation (TCM)

system.

The derivation of the exact PEP for a fading channel is obtained by averaging the Gaus-

sian probability integral over the PDFs of the fading coefficients [82]. When the channel-

state information is perfectly known at the receiver, the conditional PEP of deciding x′

when indeed x was transmitted is given by

Pr(x → x′|h) = Q

(√
1

2N0

∑

k∈ω

h2
k|x′

k − xk|2
)

(3.23)

where ω is the set of all k for which x′
k 6= xk. Using the following alternative expression

of the Q-function [83]:

Q(x) =
1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ (3.24)

Equation (3.23) can be rewritten as:

Pr(x → x′|h) =
1

π

∫ π/2

0

[f(θ)]d
2(x,x′) dθ (3.25)

where

f(θ) = exp

{
− 1

4N0 sin2 θ

}
(3.26)

and

d2(x,x′) =
∑

k∈ω

h2
k|x′

k − xk|2 (3.27)
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Then, the unconditional pairwise error probability is determined as

Pr(x → x′) = Eh

{
1

π

∫ π/2

0

[f(θ)]d
2(x,x′) dθ

}

=
1

π

∫ π/2

0

∏

k∈ω

Ehk

{
[f(θ)]h

2
k
|x′

k
−xk|

2
}

dθ (3.28)

For a Rayleigh fading channel, averaging over the pdf of the normalized Rayleigh distribu-

tion of hk yields:

Ehk

{
[f(θ)]h

2
k
|x′

k
−xk|

2
}

=
1

1 +
Es|x′

k
−xk|2

4N0 sin2 θ

(3.29)

Thus, the pairwise error probability for a Rayleigh fading channel is [82]:

Pr(x → x′) =
1

π

∫ π/2

0

∏

k∈ω

1

1 +
Es|x′

k
−xk|2

4N0 sin2 θ

dθ (3.30)

When the above PEP is substituted in (3.18) in place of the Q-function, the union bound

on the BER is given as follows:

P e ≤
N∑

l=lmin

Ns∑

n1=0

· · ·
Ns∑

nq=0

kn∑

j=1

l

N
f(n)pn,j


 1

π

∫ π/2

0

|ω|∏

i=1

1

1 +
Esd2

n,j,i

4N0 sin2 θ

dθ


 (3.31)

Note that the size of the set ω is precisely the number of channel symbols in error, i.e.,

|ω| = η =
∑

i ni. The distances dn,j,i are the Euclidean distances of the 2-D constellation

that contribute to the Euclidean distance of the symbol sequence. Thus these distances

correspond to the distances di,h in (3.19).

To reduce the computational complexity of the union bound when the number of terms

in the summation is large, the pairwise error probability can be further bounded as follows

[84]:

Pr(x → x′) ≤ K(η, xmin)
∏

k∈ω

1

1 + Es

4N0
|x′

k − xk|2
(3.32)

where xmin =
√

d2
min/4N0

1+d2
min/4N0

with d2
min is the minimum squared Euclidean distance of the

constellation, and

K(η, xmin) =
1

2η(η − 1)!

η∑

j=1

a
(η)
j

(1 + x)j
(3.33)

The coefficients a
(η)
j are computed by the following recursive relations [84]:
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For η = 1, a
(1)
1 = 1

For η ≥ 2, a
(η)
1 = a

(η)
2 = (2η − 3)(2η − 5) · · · 3 · 1

a
(η)
j = 2

(
a

(η)
j−1 − (η − 1)a

(η)
j−2

)
,

j = 3, 4, . . . , η

This bound on the pairwise error probability is very close to the exact pairwise error prob-

ability for a Rayleigh fading channel and does not involve the integral.

3.4 Numerical Results

3.4.1 AWGN Channels

Numerical results in this subsection illustrates the derived ML bound for an AWGN

channel. The bound is also compared with the simulation results of the error performance

of various receivers. First, a very short LDPC code is chosen to verify the accuracy of the

derived bound. This LDPC code is a regular (3, 6) code with rate 1/2 and a length of 24

bits. The Hamming weight spectrum of this code can be easily determined by searching all

212 codewords and it is listed in Appendix C. Simulation of the ML decoding scheme can

also be implemented for this very short length. Both QPSK and 8-PSK modulations with

Gray mappings are used.

The union bounds and simulation results over an AWGN channel are presented in Fig.

3.4. As can be seen from this figure, the union bounds are consistent with the simulation

results, especially at the high signal-to-noise ratio region. The small difference between the

simulation result and the bound is merely due to the statistical deviation associated with the

simulation. The bound is considered to be a tight bound when the data rate of the system

is above the cut-off rate of the channel. Here, the data rate of 1.5 bit/symbol of the system

with 8-PSK modulation corresponds to the signal-to-noise ratio of [Eb/N0]
(∗) = 3.28 dB.

This means that the union bound is considered as a tight bound in the range of the signal-

to-noise ratio above 3.28 dB, which can be verified by the results shown in Fig 3.4.

Computation of the union bounds is generally quite complicated because of the large

number of terms in the first summation of (3.18). However, it is expected that only the first
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Figure 3.4 The bounds and simulation results for the performance of the ML decoding
over an AWGN channel: A regular (3, 6) LDPC code of rate 1/2 and length
24 bits, Gray mapping.

few terms contribute mainly to the union bounds due to their small Hamming distances

and the corresponding Euclidean distances. The union bounds computed using different

numbers of terms in the first summation of (3.18) are shown in Fig. 3.5. Here, the system

employs a regular (3,6) LDPC code of rate 1/2 and a length of 72 bits, an 8-PSK modulation

and Gray mapping. The Hamming distance spectrum of this code, listed in Appendix C,

is also exhaustively searched over the set of all codewords. It is found that the minimum

Hamming distance of this code is 6 with only one nearest codeword. As can be seen

from Fig. 3.5, the union bound does not change significantly at high signal-to-noise ratio

when more terms are added to the summation. This observation suggests that to reduce the

computational complexity of the derived bound for systems employing longer codes, only

the first several terms are sufficient instead of using the complete Hamming spectra of the

codes.

Fig. 3.6 presents the union bounds for systems employing this (3,6) regular LDPC code

and 8-PSK constellation with Gray mapping and semi-set partitioning (SSP) mapping [67].
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Figure 3.5 The bounds over an AWGN channel: A regular (3,6) LDPC code of rate 1/2
and length 72, 8-PSK modulation and Gray mapping.

The union bounds in Fig. 3.6 show that ML performance of SSP mapping is better than

that with Gray mapping at low SNR, whereas Gray mapping outperforms SSP mapping at

high SNR. This result is due to the different Euclidean distance spectra created by these

two mappings, although they are both created from the same Hamming distance spectrum.

In particular, with the same Hamming distance of an error pattern, Gray mapping generally

transforms to a bigger Euclidean distance compared to SSP mapping. Due to the charac-

teristic of the Q-function, a few smallest Euclidean distance terms, including the minimum

Euclidean distance one, mainly contribute to the performance at high SNR. Therefore, the

small number of larger Euclidean distance terms produced by Gray mapping gives a better

performance at high SNR. At low SNR, the terms with bigger Euclidean distances become

dominant because the Q-function gives similar values at this range of SNR.

The effect of different mappings to the error performance of a coded modulation system

is also investigated in [67] for the bit-interleaved coded modulation (BICM) scheme with

iterative demodulation and decoding using convolutional codes. It is observed in [67] that,
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Figure 3.6 The bounds on the performance of the ML decoding over an AWGN chan-
nel: A regular (3, 6) LDPC code of rate 1/2 and length 72 bits, 8-PSK mod-
ulation, SSP and Gray mappings.

for 8-PSK constellation, the error performance of the systems employing the set partition-

ing and semi-set partitioning (SSP) mappings is superior to Gray mapping. It is important,

however, to point out here that such observation is only applicable when the iterative de-

modulation and decoding scheme is performed at the receiver of the BICM systems (hence,

they are generally referred to as BICM-ID systems). The coded modulation system con-

sidered in this chapter is the same as the BICM scheme, with the only exception that an

LDPC code is used instead of a convolutional code. It is therefore of interest to investigate

the iterative demodulation and decoding scheme and different mappings for the practical

LDPC coded modulation systems.

Figure 3.7 presents the simulation results of the iterative demodulation and decoding

for the regular (3,6) LDPC code of rate 1/2 and length 72. The 8-PSK constellation with

Gray and SSP mappings are considered. Here, two kinds of SISO LDPC decoders, namely

the sum-product (SP) decoder and the ordered-statistic decoder (OSD), are considered for

iteration between the demodulator and the decoder. The soft-output of these SISO decoders
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is used as the a priori probabilities of the next outer iteration as described in Section 3.2.

For the sum-product decoding with 20 iterations (i.e., the inner iterations), the results

show that the iterative demodulation and decoding (i.e., the outer iterations) does not im-

prove the error performance of the system with Gray mapping. The error performance of

the system using SSP mapping and sum-product decoder is improved and almost saturated

after only two iterations. It is observed from Fig. 3.7 that the error performance of the

iterative demodulation and SP decoding scheme with Gray mapping is superior to the error

performance of the scheme with SSP mapping. When comparing the union bounds of the

ML receiver and the simulation results of the iterative SP receiver, the performance gaps are

about 3.5dB and 7dB for the systems using Gray and SSP mappings, respectively. These

wide performance gaps between the ML scheme and the iterative SP scheme are due to the

suboptimality of the iterative demodulation and decoding, especially when applied to short

LDPC codes. This is the reason for studying decoding schemes such as the OSD in order

to approach the error performance of the ML receiver. Of course, the trade-off between

performance and complexity should also be considered.

For the coded modulation systems with OSD, simulation results show that the error

performance of these systems is superior to that of the system based on SP decoders by

about 3dB and 2dB with Gray and SSP mappings, respectively. The performance of the

OSD decoder is very close to the performance bound of the ML scheme for Gray mapping.

However, the performance of the OSD decoder with the SSP mapping cannot approach

that of the ML decoding. This is because the OSD for a coded modulation system with

SSP mapping is very suboptimum. This phenomenon encountered with the suboptimum

receivers is similarly observed for BICM-ID systems with convolutional codes [65, 67]. In

BICM-ID, the system using a mapping that has a better asymptotic performance, has the

worse convergence property. Although iterative demodulation/decoding is implemented,

the improvement due to iterations is negligible for the system with 8-PSK modulation.

It should also be mentioned here that the iterative demodulation and decoding of LDPC

coded systems with the inclusion of an interleaver between the encoder and the modulator

was also investigated. However, it was observed that such additional interleaver does not
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Figure 3.7 Comparison of the ML bound and the performances of the OSD and SP
decoders: regular (3,6) LDPC code of length 72 and rate 1/2, 8-PSK modu-
lation, AWGN channel.

influence the error performance of the systems. This fact can be explained by the “inter-

leaver inside” characteristic of the LDPC codes.

Finally, the union bound and simulation results of the iterative demodulation and de-

coding are also investigated for a medium-length and high-rate LDPC code. Specifically, a

(3,6) regular LDPC code of length 495 bits and an information block of 433 bits constructed

in [85] is considered. The terms with the smallest Hamming distances of this code are pro-

vided in [50, 85] and also listed in Appendix C. As can be seen from Fig. 3.8, the error

performance of this suboptimum decoding scheme is closer to the error performance of the

ML decoding scheme for this longer code. Here, the union bound in Fig. 3.8 is considered

to be tight only above the cutoff-rate point of 6.97dB. Thus, the ML bound can be used

to accurately predict the performance of the sum-product receiver in the high-signal-noise

ratio range. The bound computed by the numerical method is much faster and more effi-

cient than performing computer simulation. Therefore, the parameters of the system can be

conveniently and appropriately chosen by using the bound. Note that, the OSD decoders
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are not applicable at this length of the LPDC code due to their very high computational

complexity.
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Figure 3.8 The bound of the ML decoding and simulation result of the sum-product de-
coding over an AWGN channel: A regular (3, 6) LDPC code of rate 433/495
and length 495 bits, 8-PSK constellation, Gray mappings.

3.4.2 Fading Channels

In this subsection, the union bound for a Rayleigh fading channel with perfect CSI is

investigated. Again, the very short LDPC code of length 24 bits is chosen to verify the

accuracy of the bound. Fig. 3.9 shows that the simulation result of the ML decoding is also

consistent with the union bound derived for the Rayleigh fading channel.

Next, computer simulation is also implemented for the iterative demodulation and de-

coding systems based on the sum-product decoding and OSD. The simulation results to-

gether with the ML bounds are shown in Fig. 3.10. Observe that the simulation results

show a gain of 0.8 dB due to the iterations between the demodulation and the sum-product

decoding for the system with SSP mapping. The error performance of the iterative sum-

product scheme with Gray mapping is still superior to that with SSP mapping. The perfor-
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Figure 3.9 The bound and simulation result for the ML decoding over a Rayleigh fad-
ing channel: A regular (3, 6) LDPC code of rate 1/2 and length 24 bits,
8-PSK modulation and Gray mapping.

mance gap between systems with the two mappings is about 3dB at the BER level of 10−5.

At this BER level, the performance gaps between the iterative sum-product scheme and

the ML scheme are about 6dB and 10dB for the systems using Gray and SSP mappings,

respectively.

The iterative OSD scheme is also investigated with 8-PSK constellation and Gray and

SSP mappings. The error performance of the iterative demodulation/decoding system

based on the OSD decoder is better than that of the system based on the SP decoder by

about 4.5 dB and 4 dB with Gray mapping and SSP mapping at the BER of 10−5, respec-

tively. The performance of the system with Gray mapping closely approaches the perfor-

mance of the ML scheme. Note that, the upper bound for the Rayleigh fading channel,

however, is not as tight as the bound for the AWGN channel. Particularly, the demodu-

lation/decoding iteration improves the performance of the system with 8-PSK modulation

and SSP mapping by about 1 dB over a Rayleigh fading channel.
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Figure 3.10 Comparison between the ML bound and simulation results of the OSD and
SP decoders: Regular (3,6) LDPC code of length 72 and rate 1/2, 8-PSK
modulation, a Rayleigh fading channel.

Finally, the coded modulation system using an irregular LDPC code and 16-QAM mod-

ulation is also considered. An irregular LDPC code of rate 1/2 and length 200 bits is taken

from [50]. The variable node distribution of this irregular LDPC code is λ(x) = 0.31570x+

0.26758x2 + 0.41672x6 and the check node distribution is ρ(x) = 0.4381x5 + 0.5619x6.

Note that, these parameters of the irregular LDPC codes are defined in Section 2.2. The

smallest Hamming-distance terms of this LDPC code are provided in [50]. The union

bound of the ML decoding and the error performance of the iterative demodulation and

decoding are shown in Fig. 3.11. At the BER of 10−5, the performance gap between the

iterative scheme and the ML scheme is about 2 dB for the system using the Gray mapping.

At this code length, the computational complexity of the OSD algorithm is still very high

for the simulation purpose.
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Figure 3.11 The bound of the ML decoding and simulation result of the sum-product
decoding over a Rayleigh fading channel with perfect CSI: Irregular LDPC
code of rate 1/2 and length 200 bits, 16-QAM modulation and Gray map-
ping.

3.5 Conclusions

In this chapter, the union bounds for the bit error probabilities of LDPC coded mod-

ulation systems with ML decoding were derived for both AWGN and Rayleigh fading

channels. The tightness of the bounds was verified by computer simulation of the systems

employing very short LDPC codes. Simulation of the iterative demodulation and decoding

schemes based on the sum-product decoding and OSD were also carried out to compare

with the performance of the ML receiver. LDPC coded modulation systems employing

different constellations, mappings and LDPC codes were also studied. It was found that

when the short LDPC codes and Gray mapping are employed, the error performance of the

system using the OSD can be very close to the error performance of the ML scheme. Thus,

the OSD is a good candidate for the systems using short codes. The derived ML bound can

be used to benchmark the error performance of these practical systems. For medium-length

codes, the performance of the sum-product decoding approaches the ML bound at very low
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bit error rates or very high signal-to-noise ratios. Therefore, the bound can also be useful

to estimate the error performance of communications systems that require low delay and

very low BER, such as in the backbone communications.
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4. Multilevel LDPC Coded Modulation

This chapter considers another bandwidth-efficient coded modulation scheme, called

multilevel coded modulation. In particular, the system under consideration is a generalized

multilevel coded modulation with multistage decoding, where finite-length LDPC codes are

used as component codes and where the coded bits of each component code are mapped to

more than one labelling bits of the constellation symbols. The performance bound on the

bit error probability for each decoding stage is derived based on the ML criterion. These

ML bounds, obtained for both AWGN and Rayleigh fading channels, are applicable for

any code rate, constellation and mapping. As examples, performance of the systems us-

ing two component codes, non-uniform 16-QAM constellations and different mappings is

presented. These systems are appropriate for providing unequal error protection of dif-

ferent data streams. Error performance of the ordered statistic decoding and sum-product

decoding of LDPC codes is also investigated and compared to the derived bound.

4.1 Introduction

As discussed in the previous chapter, the invention of trellis coded modulation (TCM)

[60, 61] proved the advantage of combining coding and modulation. However, TCM can

only be used with convolutional codes, and it cannot be applied to block codes such as

LDPC codes. Another scheme for bandwidth-efficient coded modulation is bit-interleaved

coded modulation (BICM) [16, 17], which is a natural approach for pseudo-random codes

such as LDPC codes. The performance of finite-length LDPC coded systems, i.e., the

BICM scheme based on LDPC codes, was investigated in detail in the previous chapter.

In this chapter, another coded modulation scheme, known as multilevel coded modula-
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tion (MLC) is investigated. This MLC scheme was proposed by Imai and Hirakawa [19]

independently and simultaneously to TCM. This scheme is based on the combination of

many component codes and one signal constellation. In this system, the data stream is di-

vided into substreams. These substreams are separately encoded before they are mapped

to the same signal constellation. Each substream, or level, in this system can use a con-

volutional code, a block code such as LDPC code or is even not coded. Here, the main

idea of multilevel coding is to protect each bit position in the modulating symbols, called

a level, by a separate binary component code. At the receiver, each code is decoded indi-

vidually starting from the lowest level and it is referred to as a decoding stage. The input

of the decoder in each stage takes into account the decision of the previous stage. This

procedure is called multi-stage decoding. Compared to TCM, MLC is more flexible be-

cause any code, e.g. block codes, convolutional codes or concatenated codes, with certain

code rates, can be used as component codes. In multi-stage decoding, the code constraints

at higher levels are not taken into account in decoding the lower level. Due to this sim-

plification, the performance of the MLC scheme is degraded compared to the maximum

likelihood decoding [86]. This disadvantage can be alleviated by choosing individual code

rates properly.

As mentioned above, the MLC systems often employ multistage decoding in which

the decoded bits from the lower-level decoding stages are also used to decode bits in the

higher levels. Therefore, the error probability of the lower-level bits should be significantly

smaller than that of the higher levels in order to minimize error propagation. This means

that the component codes employed for the lower levels are often more powerful than

the codes used in the higher levels. This fact also gives multilevel coded modulation the

capability of unequal error protection. Furthermore, even when the same component code is

used in all levels, unequal error protection can still be achieved by the use of non-uniform

constellation and appropriate signal mapping. Coded modulation systems with unequal

error protection capability are attractive in applications that require different qualities of

service (i. e., bit error rate (BER) performance) for different classes of information (such

as multimedia applications that include voice and video data) [87].
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For a conventional multilevel coded modulation, the coded bits of each component

code are mapped to only one particular position of the constellation labels. When the

constellation size is large, the number of required component codes is thus high, making

the system less flexible and more complicated. Systems that allow coded bits from one

component code to be mapped to more than one position of the constellation labels were

first investigated in [87] with two convolutional codes used as component codes. Error

performance of this generalized multilevel coded modulation is only studied by simulation

in [87] and no analytical results for the bit error probabilities (BEPs) are provided.

Multilevel LDPC coded modulation has also been investigated in [88], but with infinite-

length LDPC component codes. The authors of [88] optimize the parameters of very long

LDPC codes by the density evolution technique to achieve the capacity of an additive white

Gaussian noise (AWGN) channel. However, this code length is impractical for systems that

require a short delay.

In this chapter, the generalized multilevel LDPC coded modulation is investigated with

finite-length LDPC codes. The union bounds of the bit error probabilities is obtained for

the generalized multilevel coded systems that are built from LDPC component codes and

decoded by multistage decoding. Compared to the ML bound in the previous chapter, the

derivation of the bound in this chapter shares some similarity in the steps of derivation.

Specifically, the ML bounds are also computed based on the Euclidean distance spectra

corresponding to the decoding stages. These Euclidean distance spectra are derived from

the Hamming distance spectra of the LDPC codes and the Euclidian distance profile of the

constellation. However, due to the different structure of the multilevel coded modulation

scheme, the Euclidian distance profile of the constellation is different from that of the

scheme in the previous chapter. For decoding levels, these Euclidian distance profiles of the

constellation for each level are different and strongly depend on the mapping. Especially,

the mapping can play an important role in the distribution of total transmitted power among

the levels. Therefore, the mapping and parameters of the constellation can be used to adjust

the error performance of each level.

It should also be mentioned here that the union bound for the conventional multilevel
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coded modulation using convolutional codes is considered in [89] where the error prop-

agation from the lower stages to the higher stages is also taken into account. Due to the

effect of the error propagation, the bounds presented in [89] are very loose. In contrast, the

generalized multilevel coded modulation under consideration concentrates on the scenario

that the bit error probability of the lower stage is much smaller than that of the higher stage

and error propagation can be practically ignored. This is also a common assumption in

performance analysis of the multistage decoding [90, 91] and can be met in our systems

by properly choosing the parameters of the component codes and/or the constellation and

mapping.

Performance of specific MLC systems using two component LDPC codes, uniform and

non-uniform 16-QAM constellations and different mappings is presented in detail in this

chapter. However, the framework of analysis can be generalized to other MLC systems

based on LDPC codes or other pseudo-random codes such as Turbo codes or Turbo prod-

uct codes. Two kinds of LDPC decoding, namely the order-statistics decoding (OSD) and

the sum-product decoding, are investigated by computer simulation. The algorithms of the

OSD and the sum-product decoding were presented in Chapter 3 and Chapter 2, respec-

tively. The performance of the OSD algorithm is close to the ML performance for short

LDPC codes. Hence, simulation results of this OSD algorithm are useful to verify the ML

bound. For practical MLC systems with medium-length LDPC codes, the performance of

the system using the sum-product decoding is compared to the ML bound.

4.2 System Model

Consider a generalized multilevel coded system, illustrated in Fig. 4.1, which employs

two component LDPC codes, an M -ary constellation X (M = 2q) and the multistage

decoding. Let C(1) and C(2) denote the first and second component codes, whose code rates

are R(1) and R(2); and code lengths are N (1) and N (2), respectively. Generally, the lengths

N (1) and N (2) might not be equal. The encoded bit stream of the first component code

is mapped to the first q1 bits of the labels of the constellation and the second encoded bit

stream is mapped to the last q2 bits of the labels, where q1 + q2 = q. The mapping rule
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is denoted by µ : {0, 1}q → X . The transmitted sequence x is made up of symbols from

X . For each codeword c(1)
m of code C(1), there is a corresponding transmitted sequence x

of length N (1)/q1 symbols that contains N (1) coded bits of codeword c(1)
m and N (1)q2/q1

coded bits of the second component code C(2). These coded bits of component code C(2)

can belong to several codewords of C(2), depending on the length N (2). Similarly, each

codeword c(2)
m of code C(2) corresponds to a transmitted sequence x of length N (2)/q2. As

before, the received signal at the time index k over a fading channel can be presented as

follows:

yk = hkxk + wk (4.1)

where the symbols xk, yk, hk and wk have the same meaning as in Chapter 1.
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Figure 4.1 Block diagram of generalized multilevel LDPC coded modulation with mul-
tistage decoding.

The system employs multistage decoding, which includes two stages. The first stage

decodes the code C(1) based on the soft-outputs of the demapping block. The demapping

procedure is carried out by assuming that the last q2 bits of one symbol label are equally

likely. This is because these q2 bits of the mapping labels belong to code C(2), which has

not been decoded. The soft-input decoder of an LDPC code can be the ordered-statistic

decoder (OSD) [18] or the sum-product (SP) decoder [5, 6].

When the channel state information is perfectly estimated, the likelihood ratios of coded

bits (or the soft-outputs of the demapping block for Stage 1) corresponding to the kth

received symbol can be mathematically computed as:

L(c
(1)
k,i |yk) =

P (c
(1)
k,i = 0|yk)

P (c
(1)
k,i = 1|yk)

=

∑
xk∈Xi,0

p(yk|xk)∑
xk∈Xi,1

p(yk|xk)
(4.2)
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where c
(1)
k,i is the coded bit of codeword c(1)

m at time index k, that is mapped to the ith

position of the symbol label. Note that, i can be from 1 to q1 for code C(1). The sets Xi,0

and Xi,1 are the subsets of constellation X in which the ith bit of the symbol label is 0

and 1, respectively. Similar to the system model in Chapter 2, the conditional probability

density function p(yk|xk) is given by Equation (3.5).

For the second stage, since the code C(1) is already decoded, the demapping procedure

is different from that of the first stage. The hard decision of decoder 1, assumed to be

correct, restricts the number of possible transmitted symbols in the constellation. If there

is an error in the hard decision of decoder 1, this error will affect to the input of decoder

2. Because of this possible error propagation, the code C (1) is often chosen to have a much

better correction capability than that of code C (2). The soft-output of the demapping block

for Stage 2 can be computed as follows:

L(c
(2)
k,i |C(1), yk) =

P (c
(2)
k,i = 0|C(1), yk)

P (c
(2)
k,i = 1|C(1), yk)

=

∑
xk∈Xi,0,C(1)

p(yk|xk)
∑

xk∈Xi,1,C(1)
p(yk|xk)

(4.3)

Here, Xi,0,C(1) and Xi,1,C(1) are subsets of symbols of X in which the first q1 bits are deter-

mined by the decoder of C(1) and the ith bit of the symbol label is 0 and 1, respectively.

The soft-outputs of the demapping blocks are used as the soft-inputs of the LDPC de-

coders. As mentioned in previous chapters, decoding an LDPC code can be carried out

with the ordered statistic decoder (OSD) [18] or the sum-product (belief propagation) de-

coder [5, 6]. Which decoding algorithm to use is mainly determined by the length of the

LDPC code. If the code is short, the computational complexity of OSD is practical and

the performance of the OSD is close to that of the maximum likelihood (ML) decoder.

However, when the code length is medium or large, the OSD becomes impractical and the

sum-product decoding should be used.

4.3 Performance Bounds for an AWGN Channel

In this section, the union bounds of BEPs for Stage 1 and Stage 2 are first derived for

the AWGN channel. The extension to flat fading channels is presented in Section 4.4.
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4.3.1 Performance Bound for Stage 1

Consider a received sequence y of length N
(1)
s = N (1)/q1 that corresponds to codeword

c(1)
m of C(1) and other coded bits of C(2). This received sequence is due to the transmission

of the symbol sequence x. Each element of x is a symbol of the constellation X . It might

first appear that the total number of possible sequences is MN(1)/q1 = 2qN(1)/q1 . However,

the number of possible sequences is much smaller because of the constraints of codes C (1)

and C(2). If the length of both C(1) and C(2) is N (1), the number of possible sequences is

2(R(1)+R(2))N(1)
. Here, (R(1) + R(2))N (1) is the number of information bits carried by one

symbol sequence. If the lengths of the two codes are different, the number of possible

sequences is also close to (R(1) + R(2))N (1) depending on the chosen frame length. The

constraints imply that demapping of the sequence x should yield valid codewords of C (1)

and C(2).

When there is no a priori information from the code C (2) as in the case of Stage 1

decoding, the selection of the last q2 bits of labels is carried out by not taking into account

the constraint of code C(2). Thus, the number of possible sequences is 2(R(1)+1)N (1)
, which

is bigger than that for the case when the constraints of two codes are taken into account.

This also means that the Euclidean distances among possible sequences are reduced.

Based on the received sequence y, the maximum likelihood (ML) decoding rule for

Stage 1 makes the decision to a symbol sequence that is closest to y in terms of the Eu-

clidean distance. Note that, this ML decision rule for Stage 1 is not equivalent to ML

decoding when both component codes are taken into account simultaneously. The decoded

codeword c(1)
m of code C(1) is obtained by demapping this symbol sequence. The error per-

formance of the ML rule is the ultimate performance limit for any other decoding algorithm

such as the sum-product or OSD decoders.

ML decoding without the constraint of code C(2) makes an error when the received sig-

nal y exceeds the boundary of the decision region of the transmitted sequence x. Thus,

the conditional frame error probability is a sum of the conditional error probabilities corre-
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sponding to 2(R(1)+1)N (1)
decision regions of all possible transmitted sequences. That is:

Ps,x =
∑

x′ 6=x

Pr(y ∈ Λx′ |x) (4.4)

where Ps,x is the frame error probability when the symbol sequence x is transmitted, and

Pr(y ∈ Λx′ |x) is the probability that the received sequence y belongs to the decision region

of x′ given that x is transmitted. All possible sequences are chosen equally likely, thus the

union bound of the bit error probability for Stage 1 can be written as:

P (1)
e ≤ 1

2(R(1)+1)N (1)

∑

x

∑

x′ 6=x

W
(1)
x,x′

N (1)
Pr(x → x′) (4.5)

where Pr(x → x′) is the pairwise error probability when x is transmitted, but x′ is decided

at the receiver. The parameter W
(1)
x,x′ is the Hamming distance of two codewords c(1)

m and

c(1)
m′ of C(1) obtained by demapping the two sequences x and x′, respectively. Note that,

there are many pairs of sequences x and x′ with W
(1)
x,x′ = 0, since there are many pairs that

are demapped to the same codeword of C(1). This is due to the fact that the code constraint

of C(2) is not take into account. This means that many pairwise error probabilities do not

contribute to the bit error probability of Stage 1 decoding.

As discussed in Chapter 3, for LDPC codes, the error performance is averaged over the

permuted code ensemble, where one code in this ensemble is a randomly permuted version

of another code. The average union bound can thus be written as follows:

P
(1)

e ≤ E

[
1

2(R(1)+1)N (1)

∑

x

∑

x′ 6=x

W
(1)
x,x′

N (1)
Pr(x → x′)

]
(4.6)

Following the technique in Chapter 3, the bound can be computed more conveniently by

classifying the pairwise error probabilities into groups with the same characteristics and

then averaging over these groups.

The summation of two codewords c(1)
m and c(1)

m′ is an error sequence e. For a linear

block code such as LDPC codes, the number of error sequences with a given weight is

determined by the Hamming weight spectrum of the code C (1). However, due to the random

construction of LDPC codes, the positions of the errors are also random over the length of
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a codeword. Similar to Chapter 3, error sequences of a given weight can be classified into

different types of error sequences n(1) according to the number of bit groups with the same

weights. Here, the ith element of n(1) determines the number of error bit groups of weight i.

For the example of 16-QAM constellation, each group of two coded bits of C (1) is mapped

to the first two bits of the 4-bit labels of the constellation and each group of two coded bits

of C(2) is mapped to the last two bits of these 4-bit labels. The weight of a bit group of an

error sequence can then be 1 or 2.

After classifying error sequences, the average union bound can be rewritten as follows:

P
(1)

e ≤
N(1)∑

l=l
(1)
min

N
(1)
s∑

n
(1)
1 =0

· · ·
N

(1)
s∑

n
(1)
q1

=0

l

N (1)
Bf(n(1))E

[
Q

(
Dn(1)√
2N0

)]
(4.7)

where f(n(1)) is the number of error sequences of type n(1) corresponding to a given trans-

mitted sequence x and f(n(1)) is the expected value of this function over the ensemble of

code C(1). The expected total number of error sequences of type n(1) is 2R(1)N(1)
f(n(1)).

Note that 2(R(1)+1)N (1)
is the number of possible sequences of x without considering the

constraint of code C(2). For a given transmitted sequence x, there are 2N(1) − 1 sequences

x′, whose demapped sequences are only different at the bit positions of the code C (2) and

all of them correspond to only one error sequence. Furthermore, among these 2N(1) − 1

sequences, there is a number of sequences whose corresponding Euclidean distances are

small enough compared to the smallest Euclidean distance. In (4.7), the coefficient B is

the effective error multiplicity that represents this number of sequences. This coefficient

B is often called the effective number of the nearest neighbors [89, 92]. Determining this

coefficient for the systems under consideration is quite different compared to the coded

modulation systems that employ only one component code and will be discussed later.

The function f(n(1)) is computed as in Equations (3.15) and (3.16). Here, the parame-

ters of Stage 1 decoding f(n(1)), P (1)
l,n , N (1)(l) and N (1) are substituted for f(n), Pl,n, N (l)

and N , respectively.

To compute the union bound by averaging over the random variable Dn(1) , it is assumed

that all N
(1)
s channel symbol errors are independent of each other and all the signal points
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in the constellation are equally likely to be used. Then, the total distance Dn(1) can be

computed from the single symbol error distances D
(1)
k that are also random variables as

(Dn(1))
2 =

∑N
(1)
s

k=1

(
D

(1)
k

)2

. Thus, the union bound can be rewritten as

P
(1)

e ≤
N(1)∑

l=l
(1)
min

N
(1)
s∑

n
(1)
1 =0

· · ·
N

(1)
s∑

n
(1)
q1

=0

k
n
(1)∑

j=1

l

N (1)
Bf(n(1))pn(1),jQ

(
∆n(1),j√

2N0

)
(4.8)

where pn(1),j = P [D2
n(1),j

= ∆2
n(1),j

], j = 1, 2, . . . , kn(1) . Here, kn(1) is the number of

distinguishable Euclidean distances and each of them has the probability pn(1),j .

The probability mass function (PMF) of D
(1)
n can be computed from the PMFs of D

(1)
k

with the assumption that all N
(1)
s channel symbol errors are independent of each other.

The PMFs of D
(1)
k for a given error bit group can be computed from the mapping and the

constellation by the assumption that all the signal points in the constellation are equally

likely to be used. Then the random variable D
(1)
k can take on one of several values d

(1)
i,h

with probabilities p
(1)
i,h , respectively. Here, i, 1 ≤ i ≤ q1, is the number of errors in the bit

group of code C(1), and h, 0 ≤ h ≤ hmax, is the number of possible Euclidean distances.

Note that, for a given symbol in a 2-D constellation, there are 2q2 Euclidean distances that

correspond to each error pattern of a bit group. However, only the smallest Euclidean

distance among these 2q2 distances is taken into account. Other distances are considered

in a latter procedure that computes the effective number of nearest neighbors. The random

variable D2
n(1) can take on the following values:

∆2
n(1),j =

q1∑

i=1

hmax∑

h=1

n
(1)
i,h(d

(1)
i,h)2 (4.9)

where n
(1)
i,h is the number of distances D

(1)
k = d

(1)
i,h . Note that 0 ≤ n

(1)
i,h ≤ n

(1)
i and

∑hmax
h=0 n

(1)
i,h = n

(1)
i . The probability of D2

n(1) = ∆2
n(1),j

with a given set of n
(1)
i,h is simply:

pn(1),j =

q1∏

i=1

(
n

(1)
i

n
(1)
i,0 , . . . , n

(1)
i,h

) hmax∏

h=0

p
(1)
i,h

n
(1)
i,h (4.10)

To illustrate the procedure to calculate ∆n,j and pn,j , the example of 16-QAM system

with Gray mapping in Fig. 4.2 is again considered. The random variable D
(1)
k can take on
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one of several values d
(1)
i,h . If there is one error in a bit group of 2 bits (i = 1), two error

patterns 10 and 01 are possible. In Fig. 4.2, only Euclidean distances corresponding to two

symbols of labels 1011 and 1100 are drawn for error pattern 10. The Euclidean distance

profile of one half of 16 symbols is the same as that of the symbol with label 1011 and

the Euclidean distance profile of another half of symbols is the same as that of the symbol

labelled with 1100. There are 4 Euclidean distances from one symbol to four other symbols

with the same error pattern of a bit group because two other bits of code C (2) have not been

determined. The smallest Euclidean distance among these four distances is d0. For the

error pattern 01, the two smallest Euclidean distances are d0 and 3d0. Thus, distances d
(1)
1,0

and d
(1)
1,1 are d0 and 3d0, respectively. The corresponding probabilities p

(1)
1,0 and p

(1)
1,1 are

computed by dividing the number of symbols with the same smallest Euclidean distance

to the total number of symbols. That yields p
(1)
1,0 = 3/4 and p

(1)
1,1 = 1/4. The Euclidean

distances and their corresponding probabilities are computed similarly for the case of 2

errors in the bit group of code C(1). That yields d
(1)
2,0 = 2d0 and p

(1)
2,0 = 1. The Euclidean

distances di,h with a standard 16-QAM constellation and Gray mapping are tabulated in

Table 4.1. Another mapping, called embedded mapping and shown in Fig. 4.4, is also

considered. The Euclidean distances di,h for this embedded mapping is also tabulated in

Table 4.1 for comparison.

Now, the effective error coefficient B in (4.8) is discussed. For conventional multi-

level coded modulation systems, this coefficient B is set to bη, which is the number of

possible sequences with the same Euclidean distance and the error pattern compared to

the transmitted sequence [89]. Here, b is the number of neighboring symbols in the 2-D

constellation and η is the number of error symbols. When the symbols in the 2-D con-

stellations have different numbers of neighbors, the effective error coefficient B should

take into account the proportion of the symbols that have the same number of neighbor-

ing symbols [92]. For example, if half the symbols have one neighboring symbol and the

other half have two neighboring symbols, the effective error coefficient is computed as

B =
∑η

i=0(0.5)
η−i1η−i(0.5)i2η = (3

2
)η. In the cases of asymmetric constellations, when

the effect of other neighbors is comparable to that of the nearest neighboring symbol, the
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two closest neighboring symbols are taken into account. However, these two symbols are

only counted as (1 + L) symbols with the likelihood ratio L = exp{−Es(D
2
2 −D2

1)/4N0}
[91]. Here, D1 and D2, where D2 > D1, are the Euclidean distances from the two closest

symbols of the 2-D constellation and Es is the average symbol energy. For the general-

ized multilevel coded modulation systems under consideration, there are more than one

labeling bit used by each component code. Hence the neighboring symbols should only

be counted for each smallest Euclidean distance with a given error pattern of a bit group.

However, only possible symbols corresponding to this error pattern are considered. For an

16-QAM constellation and Gray mapping shown in Fig. 4.2, there are 4 possible symbols

corresponding to an error pattern, but there is always one nearest symbol among these 4

symbols. Hence, the effective error coefficient B is simply set to 1η = 1 in this case. In

general, this effective error coefficient B depends on the constellation and mapping.

The above procedure shows all the necessary computations to determine the union

bound in (4.8) for Stage 1 decoding.

4.3.2 Performance Bound for Stage 2

The derivation of the union bound for Stage 2 is similar to that of Stage 1. First, the bit

error probability of Stage 2 is bounded by the summation of pairwise error probabilities.

Then, the average union bound is computed over the ensemble of permuted versions of

code C(2). The pairwise error probabilities are then classified into groups with the same

characteristics. Averaging over these groups of pairwise error probabilities yields a closed-

form expression of the union bound on the BEP based on the Hamming distance spectrum

of the code and the Euclidean distance profile of the constellation. It is important to note,

however, that code C(1) has been decoded in this case. The decoded bits of C(1) are assumed

to be correct and yield a different Euclidean distance profile of the constellation for Stage 2

decoding. The detailed steps to compute the union bound for Stage 2 decoding are provided

in Appendix D.

Compared to the union bound for Stage 1, the union bound for Stage 2 does not include

the effective error coefficient B. Another difference is the PMF of the single symbol error
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distance D
(2)
k . The possible distances d

(2)
1,h and d

(2)
2,h for D

(2)
k are illustrated in Fig. 4.3 for

16-QAM with Gray mapping. Recall that, when the first two label bits of code C (1) are

determined, the 16-QAM constellation simplifies to a constellation with 4 symbols. Due to

the symmetry of 16-QAM and Gray mapping, this simplified constellation is 4-PAM with

Gray mapping for every possible coded bits of C (1). Therefore, the number of distances

d
(2)
i,h is small in this case. If there is one error in the bit group of code C (2), D

(2)
k can take

on two values d
(2)
1,1 = d0 and d

(2)
1,2 = 3d0 with probabilities p

(2)
1,1 = 3/4 and p

(2)
1,2 = 1/4,

respectively. If there are two errors in the bit group, D
(2)
k can only be d

(2)
2,1 = 2d0 with

p
(2)
2,1 = 1. In Fig. 4.3, one half of symbols in 16-QAM constellation with Gray mapping

have the same Euclidean distance profile, and for simplicity, the distance profiles of only

two symbols are indicated. The Euclidean distances di,h for both stages with the standard

16-QAM constellation and Gray mapping and embedded mapping are tabulated in Table

4.1 for comparison.

Table 4.1 Euclidean distances and the corresponding probabilities for the standard 16-
QAM constellation.

Gray mapping Embedded mapping
Euclidean distance index (h) Euclidean distance index (h)

1 2 1 2 3
Stage i d p d p d p d p d p

1 1 d0 3/4 3d0 1/4 d0 1/2 2d0 1/2 0 0
2 2d0 1 0 0

√
2d0 1/4

√
5d0 1/2 2

√
2d0 1/4

2 1 d0 3/4 3d0 1/4 d0 1 0 0 0 0
2 2d0 1 0 0

√
2d0 1 0 0 0 0

4.3.3 Constellations and Mappings

The derivations in the previous subsections can be applied to arbitrary constellations

and mappings. The 16-QAM with Gray mapping was used as an example. Gray mapping

is well known to be the best mapping for uncoded data. Recent research results show that

Gray mapping is, however, not the best mapping for bit-interleaved convolutionally coded

modulation with iterative decoding (BICM-ID) [67]. Nevertheless, Gray mapping is still

found to be the best mapping for BICM systems with finite-length block codes such as

LDPC codes [93]. The criterion to evaluate different mappings in these systems is the bit

77



���������������	�
�����

� � �������� ������	�
�����

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� ��������
� ��� ��� 
�	�
 � ��������
� ��� �� ��� �	�


� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

���

Figure 4.2 The Euclidean distances of 16-QAM constellation with Gray mapping for
Stage 1.

error probability because only one component code is employed.

For our multilevel coded systems, there is no universal criterion to measure the perfor-

mance. The average BEP, computed as Pe =
[
R(1)q1P

(1)
e + R(2)q2P

(2)
e

]
/(R(1)q1+R(2)q2),

is dominated by the worse BEP among the BEPs of different stages. Different mappings

provide various and flexible modes of operations for multilevel coded systems. Each mode

can give different BEPs to serve applications with different required qualities of service.

However, since the number of available mappings is small, the flexibility in adjusting the
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Figure 4.3 The Euclidean distances of 16-QAM constellation with Gray mapping for
Stage 2.

BEPs of different stages can be restricted. Though the BEPs can also be adjusted by chang-

ing the error control coding, such a method is often complicated and expensive due to the

need of having many encoders and decoders. Fortunately, for some mappings, the con-

stellation can also be adjusted to become a nonuniform constellation or asymmetric con-

stellation in order to properly change the BEP of each stage. The distance parameters of

a constellation are continuous and they are difficult to optimize by simulation. Here, the

union bounds become very useful to chose the parameters of the constellation.
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Figure 4.4 The Euclidean distances of nonuniform 16-QAM constellation with embed-
ded mapping for Stage 1.

As mentioned earlier, another mapping, called embedded mapping, of 16-QAM con-

stellation is also considered. When this embedded mapping is employed, a nonuniform

16-QAM constellation can be used. Figs. 4.4 and 4.5 show the nonuniform 16-QAM

constellation with the embedded mapping. The minimum distance among the blocks of

4 symbols in the four quadrants of the 2-D space is d1 and the minimum distance within

these blocks is d2. This mapping is called embedded mapping because 4 symbols in each

block can be considered as a QPSK constellations for Stage 2 and these QPSK constella-

tions are embedded to a virtual bigger QPSK constellation for Stage 1. This virtual QPSK
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Figure 4.5 The Euclidean distances of nonuniform 16-QAM constellation with embed-
ded mapping for Stage 2.

constellation is indicated by the four crosses in Figs. 4.4 and 4.5. When the average en-

ergy Es is given, this nonuniform 16-QAM constellation is determined by one parameter

ρ = d1/d2. The distances d1 and d2 are given by d1 = 2ρ
√

Es/
√

ρ2 + (ρ + 2)2 and

d1 = 2
√

Es/
√

ρ2 + (ρ + 2)2. Note that, when the distance d1 increases, the distance d2

decreases. It can be intuitively predicted that when d1 increases and d2 decreases, error

performance of Stage 1 improves and error performance of Stage 2 deteriorates. This fact

can also be recognized by observing the Euclidean distances corresponding to the error

patterns in Table 4.2. Note that, when the ratio d1/d2 equals one, the nonuniform 16-QAM

81



constellation becomes the standard 16-QAM constellation.

Table 4.2 Euclidean distances and the corresponding probabilities for nonuniform 16-
QAM constellation with embedded mapping.

Euclidean distance index (h)
1 2 3

Stage i d p d p d p
1 1 d1 1/2 d2 1/2 0 0

2
√

2d1 1/4
√

d2
1 + (d1 + d2)2 1/2

√
2(d1 + d2) 1/4

2 1 d2 1 0 0 0 0
2

√
2d2 1 0 0 0 0

4.4 Performance Bounds for Fading Channels

As pointed out in Chapter 3, the union bound of the BEP for a fading channel are

different from that for an AWGN channel due to the difference in computing the pairwise

error probability (PEP). The derivation of the exact PEP for a fading channel is obtained by

averaging the Gaussian probability integral over the PDFs of the fading coefficients [82]

and it is given by Equation (3.30)

When one substitutes the above PEP into (4.8) and (D.4) in the place of the Q-function,

the union bounds on the BEPs for Stage 1 and Stage 2 decoding are given as follows:

P
(1)

e ≤
N(1)∑

l=l
(1)
min

N
(1)
s∑

n
(1)
1 =0

· · ·
N

(1)
s∑

n
(1)
q1

=0

k
n
(1)∑

j=1

l

N (1)
Bf(n(1))pn(1),j




1

π

∫ π/2

0

|ω|∏

i=1

1

1 +
Esd2

n
(1),j,i

4N0 sin2 θ

dθ




(4.11)

and

P
(2)

e ≤
N(2)∑

l=l
(2)
min

N
(2)
s∑

n
(2)
1 =0

· · ·
N

(2)
s∑

n
(2)
q2

=0

k
n
(2)∑

j=1

l

N (2)
f(n(2))pn(2),j




1

π

∫ π/2

0

|ω|∏

i=1

1

1 +
Esd2

n
(2),j,i

4N0 sin2 θ

dθ




(4.12)

where ω is the set of all k for which there is a symbol error. Note that the size of the set ω

is precisely the number of channel symbols in error, i.e., |ω| = η =
∑

i ni. The distances

dn(1),j,i and dn(2),j,i are the Euclidean distances of the 2-D constellation that contribute to

the Euclidean distance of the symbol sequence. Thus these distances correspond to the

distances d
(1)
i,h and d

(2)
i,h in (4.9) and (D.5), respectively. Finally, to reduce the computational
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complexity of the union bounds when the number of terms in the summation is large, the

pairwise error probability can be bounded as in (3.32) [84].

4.5 Illustrative Results

This section presents analytical results based on the bounds obtained in the previous

sections. Simulation results of the MLC system using the OSD are also provided to con-

firm the analytical results. The simulation of the MLC system employing the sum-product

decoding also shows how the performance of the sum-product decoding converges to the

ML bound.

4.5.1 AWGN Channels

First, short LDPC codes are chosen in order to verify the tightness of the union bounds.

Two LDPC codes are selected, a (3,6) regular code and an irregular code each each with

the same length of 72 bits and code rates of 1/2 and 1/3, corresponding to 36 and 24 bits of

information blocks, respectively. The rate-1/2 code is used for the first level, while the rate-

1/3 code is used for the second level. With this short code length, the Hamming distance

spectra of these codes are exactly determined by exhaustive search and listed in Appendix

C. Moreover, with this code length, the ordered-statistic decoding (OSD) can be used.

Here, OSDs are implemented based on ordering the likelihood ratios of the demapping bits

as discussed in Chapter 3.

The union bounds and simulation results over an AWGN channel are presented in Fig.

4.6 for the systems using the standard 16-QAM with Gray and embedded mappings. Note

that for multilevel coded modulation with many component codes, the signal to noise ratio

(SNR) is usually expressed as Es/N0 as opposed to Eb/N0 in the coded modulation with

only one component code. The reason is that the average symbol energy cannot be clearly

divided among component codes. Observe that the bounds for Gray mapping are very tight

over a wide range of SNR for both Stage 1 and Stage 2. The bound for Stage 1 in the case

of embedded mapping is tight, however, there is a small gap of about 0.5 dB at the BER of

10−5 between the bound for Stage 2 and simulation results.
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Figure 4.6 Bounds and simulation results with OSD decoding over an AWGN channel:
(3, 6)-regular LDPC codes of rates 1/2 and 1/3, a length of 72 bits, standard
16-QAM constellation, Gray and embedded mappings.

The fact that the tightness of the bounds depends on the employed mapping can be

explained as follows. The union bound is a sum of PEPs that are always larger than the

error probabilities computed by the decision region of the codewords. When the PEPs are

computed over heavily overlapped regions, the bound becomes loose. A close examination

of the Euclidean distances of 16-QAM constellation reveals that, with Gray mapping, for

many symbols in the constellation, their two nearest symbols corresponding to the cases

of 1 bit error in a bit group (which mainly contribute to the union bound) are opposite in

direction. On the other hand, with embedded mapping, these two nearest symbols are in

orthogonal direction. It is conceivable that orthogonal directions of the nearest symbols

lead to larger intersections of the regions in computing the PEPs compared to the opposite

directions. Therefore it makes the union bounds generally looser for embedded mapping

compared to Gray mapping. For example, in Fig. 4.2, the two nearest neighboring symbols

of 1011 are 0011 and 1111, which correspond to one error in a bit group. These two symbols

are in opposite directions from the symbol 1011. In contrast, the symbol 0011 in Fig. 4.4
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has two nearest neighboring symbols of 1001 and 0110. The directions of these symbols

from 1011 are orthogonal.

It can also be observed from Fig. 4.6 that for Gray mapping the performance of Stage

1 is superior to that of Stage 2 by about 1 dB at the BER of 10−5. Simulation indicates

that this performance gap is large enough to ignore the error propagation from Stage 1 to

Stage 2. This performance gap is solely due to the different Hamming distance spectra of

the chosen component codes. Note that the performance gap is not caused by the Euclidean

distance distribution in the constellation, because the two first bits and the two last bits of

the Gray labelling are symmetric for 16-QAM constellation.

When the embedded mapping is employed, the performance of Stage 1 improves by

about 1 dB at the BER of 10−5 compared to that of Gray mapping. This is due to the better

minimum Euclidean distances in the constellation as can be seen from Table 4.1. However,

the performance of Stage 2 with embedded mapping is inferior to that of Gray mapping by

about 1 dB at the BER of 10−5. This observation shows that the average symbol energy is

redistributed between the 2 bit streams by the mapping rule.

Recall that, for embedded mapping, when Stage 1 is perfectly decoded, the demapping

procedure for Stage 2 is only carried out with 4 symbols in one quadrant of the 2-D sig-

nal space. Hence, this mapping is flexible to adjust the performance of multilevel coded

modulation. Fig. 4.7 shows the bounds and simulation results for nonuniform 16-QAM

constellation with the embedded mapping. The parameters d1 and d2 of the constellation

are also indicated in the figure. Observe from Fig. 4.7 that the performance of Stage 1 im-

proves and the performance of Stage 2 deteriorates when the ratio d1/d2 increases. When

d1/d2 is set to 2, the performance of Stage 1 is improved by about 1 dB and the perfor-

mance of Stage 2 degrades by about 1.5 dB compared to the standard 16-QAM. Thus, by

changing the constellation, the reliability of different data streams can be flexibly adjusted

to meet different requirements.

A generalized multilevel coded modulation system using an LDPC code of length 200

coded bits is considered next. This code length is practical for applications such as voice
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Figure 4.7 Bounds and the simulation results with OSD decoding over an AWGN chan-
nel: (3, 6)-regular LDPC codes of rates 1/2 and 1/3, a length of 72 bits,
nonuniform 16-QAM constellations, embedded mapping.

or control signals that require a low delay. This LDPC code was used in Chapter 3 and it is

an irregular LDPC code constructed by the progressive-edge-growth (PEG) method [50].

Irregular LDPC codes created by this method have a better convergence property compared

to regular LDPC codes. The smallest terms of the Hamming distance spectrum of this

code are provided in [50]. At this code length, OSD is impossible to implement. Instead,

the sum-product (SP) decoding is used with 20 iterations. Fig. 4.8 shows the bounds and

simulation results of SP decoding for system employing nonuniform 16-QAM constellation

and embedded mapping. Although the same code is applied for both stages, the embedded

mapping still guarantees that the BEP of Stage 1 is low enough not to affect the BEP of

Stage 2. For this code length, the performance of SP decoders does not converge to the

performance of the ML decoder at low SNR range. Therefore, the performance curves of

the simulation results in Fig. 4.8 lie above the upper bounds of the ML decoding rule. The

performance of the SP decoder is closer to the performance of the ML decoder at higher

SNR and simulation results are quite close the union bounds over this higher SNR range.
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Figure 4.8 Bounds and simulation results with sum-product decoding over an AWGN
channel: An irregular LDPC code of rate 1/2 and length 200 bits, nonuni-
form 16-QAM constellations and embedded mapping.

4.5.2 Fading Channels

Fig. 4.9 presents the union bounds and simulation results of the generalized multilevel

coded modulation with nonuniform 16-QAM and embedded mapping. The OSD is imple-

mented for regular LDPC codes of length 72 and code rates 1/2 and 1/3, which are used

for Stage 1 and Stage 2, respectively. It can be observed that the union bounds are also

tight for the Rayleigh fading channel. The bounds for Stage 2 decoding seem to be tighter

than the bounds for Stage 1 decoding. This observation is similar to the case of an AWGN

channel. Compared to the performance over an AWGN channel, the performance over the

Rayleigh fading channel degrades about 3.5 dB for Stage 1 decoding and about 3.0 dB for

Stage 2 decoding, at the BER level of 10−5.

The performance of SP decoding is also investigated for the fading channel. Again,

the irregular LDPC code of length 200 coded bits is employed for both stages. Fig. 4.10

shows the union bounds and simulation results of the system with nonuniform 16-QAM
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Figure 4.9 Bounds and simulation results with OSD decoding over a Rayleigh fading
channel: A (3, 6)-regular LDPC code of rate 1/2 and length 72 bits, nonuni-
form 16-QAM constellations and embedded mapping.

and embedded mapping. It can be seen that there are performance gaps of about 1.0 dB

and 1.5 dB at BER level of 10−6 between the simulation results and the union bounds for

Stage 1 and Stage 2, respectively. Similar to the case of an AWGN channel, this is due to

the convergence property of the SP algorithm. It appears that with medium-length codes

the SP decoders do not converge well over the Rayleigh fading channel. Hence, in general,

the gaps between the bounds and the simulation results in the case of a Rayleigh fading

channel are larger than that in the case of an AWGN channel at the practical BER levels

between 10−6 and 10−7.

4.6 Conclusions

Error performance of generalized multilevel coded modulation systems with multistage

decoding was analyzed in this chapter. In these systems, the encoded bit stream of each

level is mapped to a group of labelling bits instead of only one bit as in the case of con-

ventional multilevel coded modulation. The union bounds of the bit error probabilities are
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Figure 4.10 Bounds and simulation results with sum-product decoding over a Rayleigh
fading channel: A regular LDPC code of rate 1/2 and length 200 bits,
nonuniform 16-QAM constellations and embedded mapping.

derived for different stages. The bounds are useful to evaluate the error performance of

the systems having different parameters such as code rates, constellations and mapping

rules. The bounds are shown to be tight by verifying against the simulation results of the

ordered statistic decoding of short LDPC codes. For the sum-product decoding, there are

gaps between the bounds and simulation results at low signal-to-noise ratio (SNR) range.

However, at high SNR range, the bounds are seen to be close enough to the performance

of the sum-product decoding. Thus, the bounds can be used to benchmark the performance

of finite-length LDPC coded modulation systems. Although the chapter focuses on sys-

tems with 16-QAM constellations and two LDPC component codes, systems employing

arbitrary constellations/mappings and more than two component codes can be similarly

analyzed by the same framework.
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5. LDPC Coded Unitary Space-Time Modulation

This chapter considers finite-length LDPC coded unitary space-time modulation sys-

tems. These systems are equipped with multiple antennas at both the transmitter and the

receiver. The design and performance analysis are carried out for unknown channel state

information (CSI) at the receiver. The structure of these LDPC coded unitary space-time

modulation systems is similar to that of the bandwidth-efficient coded modulation studied

in Chapter 3, where a group of coded bits is mapped to one symbol of the unitary space-time

constellation. Here, the signal symbols of the unitary constellation are spread over several

time intervals and multiple antennas instead of the in-phase and quadrature axes as in the

case of the coded modulation systems in Chapter 3. In this chapter, the performance bound

on the bit error probability is derived for any code rate, unitary space-time constellation

and mapping. The tightness of the bound is verified by simulation results of the ordered

statistic decoding (OSD). This bound is also useful to benchmark the error performance of

LDPC coded unitary space-time modulation systems that employ sum-product decoding.

5.1 Introduction

Future applications of wireless data transmission require high data rates as well as high

quality of services such as high reliability and low delay. It is a challenging task to de-

sign wireless communications systems to meet this demand. In order to achieve this goal,

new communications techniques are needed to combat the physical limitations of wire-

less channels such as fading and interference. Recently, multiple-input multiple-output

(MIMO) systems, that employ antenna arrays at both the transmitter and the receiver, have

attracted a great interest in both the research community and industry. When a system is

equipped with multiple antennas at the transmitter and the receiver, there are many paths
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from the transmitter to the receiver. If the distances among the transmit antennas and the

receive antennas are large enough, the fading coefficients of the paths are independent. A

signal can thus be simultaneously transmitted over independent fading paths and detected

with a high reliability at the receiver. This is because when one path is in deep fade, the

other paths are likely to be good. The transmitted signals at different transmit antennas

can properly cooperate to exploit the diversity effect of the MIMO channel or to be conve-

niently detected at the receiver. Compared to a single-transmit antenna and single-receive

antenna system, the MIMO systems can provide significant improvement in terms of both

the data rate, i.e., the bandwidth efficiency, and the reliability of the communications.

Based on the assumption that the channel state information (CSI) is perfectly estimated

at the receiver, information theoretical results show that the capacity of MIMO systems

is much higher than that of single-antenna systems [94]. Assuming that the channel co-

efficients among different pairs of the transmit and receive antennas are independent and

known to the receiver, efficient designs of Bell Labs layered space-time (BLAST) schemes,

space-time trellis codes and space-time block codes are introduced in [95], [20, 22], and

[21], respectively. The V-BLAST (vertical BLAST) scheme treats two-dimensional signal

symbols as independent signals and divide the symbol stream to antennas for transmission.

Hence, the V-BLAST scheme increases the date rate or the bandwidth efficiency of the

MIMO system. In other words, the V-BLAST scheme increases the multiplexing gain [96]

of the MIMO systems. On the other hand, the D-BLAST (diagonal BLAST) scheme repeats

the signal symbol over the transmit antennas. Therefore, the symbols contain redundancy

for detection at the receiver and the error performance of the MIMO system is improved.

For quasi-static Rayleigh fading channels, the space-time codes are designed over the time

interval of constant fading coefficients. The two-dimensional symbols and their complex

conjugates are transmitted over antennas and follow an order that is determined by a matrix

for a space-time block code or a trellis for a space-time trellis code.

Space-time codes in general and BLAST schemes in particular are the diversity schemes

implemented over space and time. For uncoded systems, the structure of these schemes de-

cides the trade-off between multiplexing and diversity gains of a MIMO system [96, 97].
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The concepts of multiplexing and diversity gains are similar to the code rate and error

performance of error control coding. Hence, the problem of diversity and multiplexing

trade-off for a MIMO system is similar to the trade-off between the error exponent and the

reliability function as discussed in Chapter 3 [96].

Space-time codes and BLAST schemes are often designed, evaluated and compared to

each other without the use of an error control coding. This means that the information

bits are spread over a short-time interval in these schemes. However, when powerful error

control coding is employed, the difference on the performance of these diversity schemes

is significantly decreased [3].

The above multiple-antenna modulation schemes are discussed in the context of known

CSI at the receiver, i.e., with the assumption that the fading coefficients are perfectly es-

timated. Unfortunately, for many mobile communication systems, the fading coefficients

change too fast due to large Doppler shifts. For example, a wireless channel for a mobile

traveling at 60-mi/h and with carrier frequency of 1.9 GHz has a coherence time period

of about 3 ms. With a symbol rate of 30 kHz, a fresh fade occurs about every 100 sym-

bols. Moreover, if the training sequences, which have no information content, are used to

estimate the channel state information, there is a significant waste of the valuable spectrum.

Therefore, another design approach is introduced in [23, 24] for the systems without

the knowledge of the channels coefficients at both the transmitter and the receiver. In these

papers, the authors show that a class of signal constellations, known as unitary space-time

constellations, is the most suitable modulation format for MIMO channels without CSI at

the receiver or the transmitter. The advantages offered by these constellations motivated

research work on the designs of unitary space-time constellations in order to optimize the

system performance while reducing the processing complexity [98–100]. In particular,

the design criterion used in [98–100] is based on the pairwise error probability, originally

derived in [24] for uncoded unitary space-time modulation. This pairwise error probability

for such non-coherent systems is computed in the complex Grassmanian space, which is a

counterpart to the Euclidean space in the case of coherent systems.
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The results on the error performance of unitary space-time modulation [24,98–100] are

mainly investigated for uncoded systems. In order to improve the performance of the sys-

tems, channel coding, especially the powerful pseudo-random codes such as Turbo codes

and LDPC codes [5], should be considered. Although the authors in [101] investigate the

unitary space-time modulation with Turbo codes, only simulation is carried out. The error

performance of bit-interleaved coded unitary space-time modulation with iterative demod-

ulation and decoding (BICM-ID) was recently studied in [102]. The work in [103] studies

an LDPC coded unitary space-time OFDM system over a broadband mobile channel, but

again only by means of computer simulation.

As discussed, analytical results for the maximum likelihood (ML) bound are not avail-

able for a system that combines an unitary space-time modulation and a pseudo-random

code. In this chapter, the ML bound shall be derived for finite-length LDPC coded uni-

tary space-time modulation systems. For finite-length LDPC codes, the error performance

of the sum-product decoder converges to that of the ML decoder at practical BER levels.

Therefore, the ML bound is useful to benchmark the error performance of finite-length

LDPC coded unitary modulation systems. Here, the usefulness of the bound is illustrated

by simulation results of LDPC coded unitary systems employing sum-product decoding

and ordered-statistic decoding (OSD). These algorithms were presented in Chapter 2 and

Chapter 3, respectively.

5.2 System Model
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Figure 5.1 Block diagram of LDPC coded unitary space-time modulation system.

The block diagram of LDPC coded unitary space-time modulation system is illustrated

in Fig. 5.1. An information sequence is first encoded into a codeword c using an LDPC
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code of rate Rc and length Nc bits. Then every group of q bits in c is mapped by a mapping

µ to one of L = 2q matrices Ψ(l), l = 1, 2, . . . , L. Here Ψ(l), 1 ≤ l ≤ L, are T×Nt unitary

matrices which constitute the constellation Ψ, Nt is the number of transmit antennas and T

is the number of signalling intervals. The mapping µ from q coded bits to a signal point in

Ψ can be a Gray mapping in which the labels of the closest signal points measured in terms

of chordal distance differ in only one bit, or any other mapping. Thus, the structure of the

transmitter of this system is similar to that of the coherent coded modulation system studied

in Chapter 3. Here, the unitary constellation over space and time is employed instead of a

two-dimensional constellation of in-phase and quadrature axes as in Chapter 3.

The system is equipped with Nr receive antennas. At the symbol time index τ , the

T × Nr matrix Yτ of the received signals corresponding to the transmitted signal Xτ ∈ Ψ

can be written as:

Yτ =

√
γT

Nt

XτHτ + Wτ (5.1)

where Hτ is the Nt × Nr matrix of the fading coefficients whose entries are zero-mean

complex Gaussian random variables with unit variance. It means that the magnitude of

the fading coefficients are Rayleigh random variables. The T × Nr matrix Wτ represents

the additive white Gaussian noise whose entries are also complex Gaussian random vari-

ables with zero mean and unit variance. The normalization factor in (5.1) ensures that the

average signal-to-noise ratio (SNR) at each receive antenna is γ, independent of Nt. The

spectral efficiency for the system is therefore qRc/T information bits per second per Hertz

(bits/s/Hz). In the above mathematical model, the fading coefficients are assumed to be

constant over a block of T signalling intervals but change independently over blocks [22].

The channel coefficients, however, are unknown at both the transmitter and the receiver.

Conditional on the transmitted signal matrix Xτ , the probability density function (PDF)

of the received signal is given by [23, 24].

p(Yτ |Xτ ) =
exp

(
−tr{Λ−1

τ YτY
†
τ}
)

πTNr [det(Λτ )]
Nr

(5.2)

where “tr” denotes the trace function, (·)† is conjugate transpose and Λτ = IT +(γ/Nt)XτX
†
τ

is the covariance matrix of Yτ .
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The receiver employs the maximum a posteriori probability (MAP) soft-output space-

time demodulator. The likelihood ratios of the transmitted bits, which are the soft outputs

of the demodulator, can be computed as follows [101]:

L(cτ,k) =

∑
Ψ(l)∈Ψk

1

exp(−tr{Λ(l)−1YτY
†
τ})

[det(Λ(l))]Nr

∑
Ψ(l)∈Ψk

0

exp(−tr{Λ(l)−1YτY
†
τ})

[det(Λ(l))]Nr

(5.3)

where L(cτ,k) is the likelihood ratio of the kth bit (1 ≤ k ≤ q) of the τ th transmitted

symbol. The covariance matrices Λ(l) are computed for each space-time symbol as Λ(l) =

IT + (γ/Nt)Ψ(l)Ψ†(l). Also Ψk
1 and Ψk

0 are subsets of the symbols of Ψ such that the

kth bits of their mapping labels are 1 and 0, respectively. It should be pointed out that

(5.3) is applicable for general space-time constellations and the unitary structure of the

transmitted signals is not taken into account. Furthermore, the soft-output demodulator

based on (5.3) is generally very complex since it requires the computations of the inverses

and determinants of the covariance matrices Λ(l). When the unitary space-time modulation

is employed, one has Ψ†(1)Ψ(1) = Ψ†(2)Ψ(2) = · · · = Ψ†(L)Ψ(L) = INt
, and the

likelihood ratios can be computed much simpler as follows [101]:

L(cτ,k) =

∑
Ψ(l)∈Ψk

1
exp

(
tr
{

1
1+Nt/γT

Y†
τΨ(l)Ψ†(l)Yτ

})

∑
Ψ(l)∈Ψk

0
exp

(
tr
{

1
1+Nt/γT

Y
†
τΨ(l)Ψ†(l)Yτ

}) (5.4)

The likelihood ratios computed by (5.4) are fed to the LDPC decoder. In this chapter,

two kinds of LDPC decoders, the ordered statistic decoder (OSD) [18,74,104] and the sum-

product (SP) decoder [5, 6], are considered. Performances of systems with these two kinds

of decoders are investigated by computer simulation. The simulation results are compared

to the performance bound, which is derived based on the maximum likelihood criterion.

The algorithms of these decoders are described in detail in Chapters 2 and 3.

5.3 Unitary Space-Time Constellation and Mapping

For the general case, a symbol of a space-time constellation can be any matrix of size

T×Nt. However, information theoretical results in [23,24] show that the unitary space-time

constellations, which are othornormal with respect to time among the transmit antennas, are
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most suitable to achieve the capacity of the non-coherent fading channel. Mathematically,

this means that a space-time symbol Ψ(l) should satisfy Ψ†(l)Ψ(l) = INt
. Thus, in con-

trast to being freely located in a T × Nt-dimensional complex signal space in the general

case, the symbols of a unitary space-time constellation lie on a manifold of this T × Nt-

dimensional complex space. Note that, since the unitary space-time symbols are of equal

energy, the surface of the energy constraint’s sphere includes the manifold that the unitary

space-time symbols can be located on. This manifold is similar to a curve on the surface of

a 3-dimensional sphere.

The soft outputs of the detector for the unitary space-time constellation are computed as

in (5.4). Here, it can be recognized from (5.4) that only the quantity tr
{
Y†

τΨ(l)Ψ†(l)Yτ

}

is relevant when the hard-decision detection is carried out. More specifically, the maximum-

likelihood detector for an uncoded unitary space-time modulation implements the follow-

ing rule [98]:

ΨML = arg max
Ψ(l)∈Ψ

tr
{
Y†

τΨ(l)Ψ†(l)Yτ

}
(5.5)

With the above ML detector, the pairwise error probability (PEP) of the uncoded unitary

space-time modulation is given as follows [98]:

Pl,l′ = − 1

2πj

∫ ∞

−∞

1

ω + j/2

(
Nt∏

m=1

[
1 + γT/Nt

(γT/Nt)2(1 − d2
m)(ω2 + a2

m)

]Nt

)
dω. (5.6)

where 1 ≥ d1 ≥ · · · ≥ dNt
≥ 0 are the singular values of the Nt × Nt correlation matrix

Ψ(l)Ψ(l′) and

am =

√
1

4
+

1 + γT/Nt

(γT/Nt)2(1 − d2
m)

(5.7)

A common and logical design criterion for unitary space-time constellations is to min-

imize the PEP. Let Fl and Fl′ be two Nt-dimensional planes that are spanned by Ψ(l) and

Ψ(l′) in the T × Nt -dimensional complex signal space. Then, one can think about the

singular values dm as the cosines of the principle angles between Fl and Fl′ and the chordal

distance between the two signals Ψ(l) and Ψ(l′) is
√∑Nt

m=1(1 − d2
m) [98]. In this way, the

design criterion of an unitary space-time constellation becomes maximizing the minimum
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chordal distances among the unitary symbols. The design problem is therefore related to

the so-called packing in complex Grassmanian manifolds [105].

There are a few studies on the design of unitary space-time modulations based on sig-

nal processing and algebraic perspectives. Among them, the orthogonal construction in-

troduced in [100] is a very simple but yet effective design of unitary space-time constella-

tions. When Nt = 2, given the number of signal points L = M 2, where M is a positive

integer, the construction procedure presented in [100] is as follows. For an integer number

l, 1 ≤ l ≤ L, define k = (l − 1) div M and p = (l − 1) mod M . Then the 4 × 2 unitary

signal point Ψ(l) is defined as [100]:

Ψ(l) =
1

2


 1 −1 exp

(
j 2π

M
k
)

− exp
(
−j 2π

M
p
)

1 1 exp
(
j 2π

M
p
)

exp
(
−j 2π

M
k
)




T

(5.8)

Observe that the two elements exp
(
j 2π

M
k
)

and exp
(
j 2π

M
p
)

belong to an M -PSK con-

stellation. As shown in [100], for two unitary signal points Ψ(l) and Ψ(l ′) that correspond

to two pairs [k, p] and [k′, p′], the two singular values of Ψ†(l)Ψ(l′) are equal and given by,

d1(l, l
′) = d2(l, l

′) =
1

2

√
2 + cos

2π

Q
(k − k′) + cos

2π

Q
(p − p′) (5.9)

Hereafter, references to a signal point using Ψ(l) and the pair of integers [k, p], where k

and p are related to l as defined earlier, are interchangeable. The extension for Nt > 2 is

also presented in [100], but only possible for Nt = 3 and Nt = 4 due to the limitation of

orthogonal design.

Using the standard definition of the distance between subspaces, the chordal distance

between Ψ(l) and Ψ(l′) is given as [98]:

dc(l, l′) =

√√√√
Nt∑

m=1

[1 − d2
m(l, l′)] (5.10)

As an example, the chordal distances among symbols of the unitary space-time constella-

tion constructed with orthogonal design and QPSK are tabulated in Table 5.1.
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Table 5.1 Chordal distance profile of the unitary space-time constellation constructed
with orthogonal design and QPSK.

Ψ(1) Ψ(2) Ψ(3) Ψ(4) Ψ(5) Ψ(6) Ψ(7) Ψ(8) Ψ(9)Ψ(10)Ψ(11)Ψ(12)Ψ(13)Ψ(14)Ψ(15)Ψ(16)
[0, 0] [0, 1] [0, 2] [0, 3] [1, 0] [1, 1] [1, 2] [1, 3] [2, 0] [2, 1] [2, 2] [2, 3] [3, 0] [3, 1] [3, 2] [3, 3]

Ψ(1) 0
√

1/2 1
√

1/2
√

1/2 1
√

3/2 1 1
√

3/2
√

2
√

3/2
√

1/2 1
√

3/2 1

Ψ(2)
√

1/2 0
√

1/2 1 1
√

1/2 1
√

3/2
√

3/2 1
√

3/2
√

2 1
√

1/2 1
√

3/2

Ψ(3) 1
√

1/2 0
√

1/2
√

3/2 1
√

1/2 1
√

2
√

3/2 1
√

3/2
√

3/2 1
√

1/2 1

Ψ(4)
√

1/2 1
√

1/2 0 1
√

3/2 1
√

1/2
√

3/2
√

2
√

3/2 1 1
√

3/2 1
√

1/2

Ψ(5)
√

1/2 1
√

3/2 1 0
√

1/2 1
√

1/2
√

1/2 1
√

3/2 1 1
√

3/2
√

2
√

3/2

Ψ(6) 1
√

1/2 1
√

3/2
√

1/2 0
√

1/2 1 1
√

1/2 1
√

3/2
√

3/2 1
√

3/2
√

2

Ψ(7)
√

3/2 1
√

1/2 1 1
√

1/2 0
√

1/2
√

3/2 1
√

1/2 1
√

2
√

3/2 1
√

3/2

Ψ(8) 1
√

3/2 1
√

1/2
√

1/2 1
√

1/2 0 1
√

3/2 1
√

1/2
√

3/2
√

2
√

3/2 1

Ψ(9) 1
√

3/2
√

2
√

3/2
√

1/2 1
√

3/2 1 0
√

1/2 1
√

1/2
√

1/2 1
√

3/2 1

Ψ(10)
√

3/2 1
√

3/2
√

2 1
√

1/2 1
√

3/2
√

1/2 0
√

1/2 1 1
√

1/2 1
√

3/2

Ψ(11)
√

2
√

3/2 1
√

3/2
√

3/2 1
√

1/2 1 1
√

1/2 0
√

1/2
√

3/2 1
√

1/2 1

Ψ(12)
√

3/2
√

2
√

3/2 1 1
√

3/2 1
√

1/2
√

1/2 1
√

1/2 0 1
√

3/2 1
√

1/2

Ψ(13)
√

1/2 1
√

3/2 1 1
√

3/2
√

2
√

3/2
√

1/2 1
√

3/2 1 0
√

1/2 1
√

1/2

Ψ(14) 1
√

1/2 1
√

3/2
√

3/2 1
√

3/2
√

2 1
√

1/2 1
√

3/2
√

1/2 0
√

1/2 1

Ψ(15)
√

3/2 1
√

1/2 1
√

2
√

3/2 1
√

3/2
√

3/2 1
√

1/2 1 1
√

1/2 0
√

1/2

Ψ(16) 1
√

3/2 1
√

1/2
√

3/2
√

2
√

3/2 1 1
√

3/2 1
√

1/2
√

1/2 1
√

1/2 0

Now, let dc
min be the minimum chordal distance between any two different signal points

in an unitary constellation. Similar to the signal constellation in the conventional Euclidean

space, the mapping rule µ of a constellation Ψ is called Gray mapping if the labels of two

signal points at chordal distance dc
min differ in only 1 bit. Besides Gray mapping, an-

other mapping, called BICM-ID mapping, is also considered in this chapter. The BICM-ID

mapping is designed for bit-interleaved coded space-time modulation with iterative demod-

ulation and decoding (BICM-ID) that relies on a convolutional code [102]. This mapping

is the best in terms of minimizing the asymptotic performance of BICM-ID. The Gray and

BICM-ID mappings for the unitary space-time constellation of 16 symbols obtained from

the orthogonal design with Q-PSK are shown in Table 5.2.

5.4 Performance Bound

Due to the similarity between the structures of LDPC coded unitary space-time mod-

ulation considered here and coherent LDPC coded modulation investigated Chapter 3, the

steps of derivation of the performance bounds are also similar. First, the bit error prob-

ability (BEP) is bounded by a summation of the pairwise error probabilities. Then, the
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Table 5.2 Two different mappings of the unitary constellation obtained from orthogo-
nal design and QPSK.

Gray
Ψ(1) Ψ(2) Ψ(3) Ψ(4) Ψ(5) Ψ(6) Ψ(7) Ψ(8) Ψ(9)Ψ(10)Ψ(11)Ψ(12)Ψ(13)Ψ(14)Ψ(15)Ψ(16)
0000 0001 0011 0010 0100 0101 0111 0110 1100 1101 1111 1110 1000 1001 1011 1010

BICM-ID
Ψ(1) Ψ(2) Ψ(3) Ψ(4) Ψ(5) Ψ(6) Ψ(7) Ψ(8) Ψ(9)Ψ(10)Ψ(11)Ψ(12)Ψ(13)Ψ(14)Ψ(15)Ψ(16)
0000 1001 0011 1010 1100 0101 1111 0110 1011 0010 1000 0001 0111 1110 0100 1101

average union bound is computed over the ensemble of the permuted versions of the LDPC

code. The pairwise error probabilities are then classified into groups with the same charac-

teristics. Averaging over these groups of pairwise error probabilities yields a closed-form

expression of the performance bound on the BEP based on the Hamming distance spectrum

of the code and the chordal distance profile of the unitary constellation. Some differences

arise, however, due to the use of multiple transmit and receive antennas and non-coherent

detection. It should be mentioned that although the structures of the transmitters in both

systems are similar, the detection is different at the two receivers. For multiple transmit

and receive antennas, the symbols of the transmitted constellation are superimposed at

the receiver. Therefore, detection and performance evaluation are considered for the su-

perimposed constellation instead of the transmitted constellation as in the case of coded

modulation scheme in Chapter 3.

Consider a received sequence Y of length Ns = Nc/q symbols that corresponds to

codeword c of C. Here, the sequence Y = [Y1, . . . ,Yτ , . . . ,YNs
] consists of Ns re-

ceived signal symbols, which results from the transmission of the symbol sequence X =

[X1, . . . ,Xτ , . . . ,XNs
], where each element of X is a symbol (or signal point) of an unitary

constellation Ψ.

Based on the received sequence Y, the maximum likelihood (ML) decoding rule makes

the decision to a symbol sequence X̂ whose corresponding received signal is closest to Y

in terms of the sum of the chordal distances. Note that, here, the ML decision rule is

interpreted in the context of non-coherent detection in which the CSI is unknown at the

receiver. The error performance of the ML rule is the ultimate performance limit for any
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other decoding algorithm, i. e., it serves as a lower bound of the error performance of any

other decoders.

The ML decoding makes an error when the received signal Y exceeds the boundary of

the decision region of the transmitted sequence X. Thus, the conditional frame error proba-

bility is a sum of the conditional error probabilities corresponding to 2RcNc decision regions

of all the possible transmitted sequences. Furthermore, since all the possible sequences are

chosen equally likely, the union bound of the bit error probability can be written as:

Pe ≤
1

2RcNc

∑

X

∑

X̆6=X

W
X,X̆

Nc

Pr(X → X̆) (5.11)

where Pr(X → X̆) is the pairwise error probability that X is transmitted, but X̆ is decided

at the receiver. The parameter W
X,X̆ is the Hamming distance of two codewords c and c̆ of

C obtained by demapping the two sequences X and X̆, respectively.

Averaging over the permuted LDPC code ensemble, the average union bound can thus

be written as follows:

P e ≤ E


 1

2RcNc

∑

X

∑

X̆6=X

W
X,X̆

Nc

Pr(X → X̆)


 (5.12)

Following similar analysis as in [24], if X and X̆ differ in d symbols, the PEP between the

two sequences X and X̆ can then be computed as follows:

Pr(X → X̆) = Pr

(
d∑

e=1

tr(Y†
τ(e)X̆τ(e)X̆

†
τ(e)Yτ(e)) >

d∑

e=1

tr(Y†
τ(e)Xτ(e)X

†
τ(e)Yτ(e))

)
(5.13)

where τ(e), e = 1, 2, · · · , d, are the indices of the symbols in error.

The above PEP can be computed with a complex integral as follows [24]:

Pr(X → X̆) = − 1

2πj

∫ ∞

−∞

1

w + j/2

(
d∏

e=1

∆e

)
dw (5.14)

where

∆e =
Nr∏

m=1

[
1 + γT/Nt

(γT/Nt)2(1 − d2
m,e)(w

2 + a2
m,e)

]Nr

(5.15)
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In (5.15), dm,e, 1 ≤ m ≤ Nr, is the mth singular value of the Nr × Nr matrix X̆
†
τ(e)Xτ(e).

The parameter am,e is computed from dm,e as in (5.7), where dm,e plays the role of dm.

As mentioned before, the bound in (5.12) can be computed more conveniently by clas-

sifying the pairwise error probabilities into groups with the same characteristics and then

averaging over these groups [73, 93]. To this end, consider a pair of X and X̆ that are

demapped to two codewords c and c̆. The error sequence e is the modulo-2 sum of these

two codewords. The number of error sequences with a given weight is determined by the

Hamming weight spectrum of the code C. However, the positions of the errors are not de-

termined because of the randomization in creating LDPC codes. Similar to Chapter 3, error

sequences of a given weight can be classified into some types of error sequences according

to the number of bit groups with the same weights. Let ni, 1 ≤ i ≤ q, denote the num-

ber of error bit groups of weight i. An error sequence can be described by the parameters

ni. The vector n, that contains these parameters ni, can be referred to as the type of error

sequences.

Then the terms of the expectation and summation in (5.12) can be grouped according

to types of error sequences. The performance bound can be rewritten as follows:

P e ≤
Nc∑

l=lmin

Ns∑

n1=0

· · ·
Ns∑

nq=0

l

Nc

f(n)E [Ω (n)] (5.16)

where f(n) is the number of error sequences of type n and f(n) is the expected value of this

function over the ensemble of code C. The expected total number of error sequences of type

n is 2RcNcf(n). The function Ω (n) is the average pairwise error probability corresponding

to a type of error sequence. The value of this function is a random variable because the type

of error sequence can correspond to different symbol error sequences that have different

pairwise error probabilities.

The function f(n(1)) can be similarly computed as in Equations (3.15) and (3.16) in

Chapter 3, where the parameters of the unitary space-time modulation are substituted in

the places of the parameters of the coded modulation. For example, Nc is used instead of

N in Equations (3.15) and (3.16).
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To compute the bound, the probability mass function (PMF) of the random variables

Ω (n) needs to be known. Let Ωk (n) denote a possible outcome of the random variable

Ω (n) and pn,k be the corresponding probability, where k (1 ≤ k ≤ κn) is the index

of the outcome and κn is the number of possible outcomes. Each outcome Ωk (n) and

its corresponding probability pn,k are determined by a possible combination of erroneous

symbols. The following example is given to illustrate how an outcome Ωk (n) is established

from the erroneous symbols.

Consider an LDPC coded unitary modulation system where the unitary space-time con-

stellation has 16 symbols and the BICM-ID mapping is employed in Subsection 5.3. For

the type n = [1 2 0 0] of error sequence, there are d = 1 + 2 = 3 unitary symbols in

error in which 1 symbol has 1 bit in error and 2 symbols have 2 bits in errors in their

labels. Figure 5.2 illustrates the transmitted sequence X with this error sequence. The uni-

tary symbols Xτ(1), Xτ(2) and Xτ(3) are symbols with 1 bit in error, 2 bits error and 2 bits

in error in their labels, respectively. For a 1 bit error in Xτ(1), an erroneous symbol can

be the result of making a wrong decision among 32 pairs of symbols in the 16-ary uni-

tary constellation. For each pair of unitary symbols, there is only one singular value dm,e

(e = 1) of matrix X̆
†
τ(1)Xτ(1). This singular value is necessary to compute the outcome

Ωk (n) as indicated in (5.15) and (5.14). Fortunately, for a BICM-ID mapping, dm,1’s take

on the same value d
(1)
m,1 = 1 for all 32 pairs of symbols. Thus, the corresponding proba-

bility for this d
(1)
m,1 is p

(1)
1 = 1. For 2 bits in error in Xτ(2) and Xτ(3), 64 pairs of unitary

symbols need to be considered to compute dm,e’s (e = 2 or e = 3). However, there are 48

pairs with the same value d
(1)
m,e = 0.5 and 16 other pairs take the same value d

(2)
m,e = 0.0.

Assuming that all the symbols are equally used, the corresponding probabilities of d
(1)
m,e

and d
(2)
m,e are p

(1)
e = 48/(48 + 16) = 3/4 and p

(2)
e = 16/(48 + 16) = 1/4. For each

d
(h)
m,e, the parameter ∆

(h)
e can be computed by (5.15). A possible outcome Ωk (n) is deter-

mined by the set {∆e,k}, which is created by collecting one value ∆
(h)
e from the erroneous

symbols Xτ(e). Thus, for n = [1 2 0 0] in the example, four possible outcomes Ωk (n)

are determined by four sets {∆e,1} =
{

∆
(1)
1 , ∆

(1)
2 , ∆

(1)
3

}
, {∆e,2} =

{
∆

(1)
1 , ∆

(1)
2 , ∆

(2)
3

}
,

{∆e,3} =
{

∆
(1)
1 , ∆

(2)
2 , ∆

(1)
3

}
and {∆e,4} =

{
∆

(1)
1 , ∆

(2)
2 , ∆

(2)
3

}
. Here, the number of out-
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comes κn is 4. The value of Ωk (n) is computed from {∆e,k} by (5.14) and the correspond-

ing probability pn,k is a product of the probabilities p
(h)
e ’s that contribute to the combination

of {∆e,k}. Note that, some outcomes Ωk (n) can have the same value, such as Ω2 (n) and

Ω3 (n) in the example. Thus, they can be grouped by summing the corresponding proba-

bilities when the bound or the PMF of Ω (n) is computed by computer.
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Figure 5.2 Possible outcomes of Ω(n), for n = [1 2 0 0]: Unitary space-time constel-
lation of 16 symbols, BICM-ID mapping.

After determining the possible outcomes Ωk (n) and their corresponding probabilities

pn,k of Ω (n), the performance bound can be rewritten as:

P e ≤
Nc∑

l=lmin

Ns∑

n1=0

· · ·
Ns∑

nq=0

κn∑

k=1

l

Nc

f(n)pn,k

[
− 1

2πj

∫ ∞

−∞

1

ω + j/2

(
d∏

e=1

∆e,k

)
dω

]
(5.17)
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Figure 5.3 Block diagram for the computation of the bound.

The above procedure shows all the necessary computations to determine the union

bound in (5.17) for the unitary space-time LDPC coded modulation systems. As a sum-

mary, the computation procedure is described with a block diagram in Fig. 5.3.

5.5 Illustrative Results

This section provides analytical and simulation results to confirm the analysis carried

out in the previous section. First, a short LDPC code is chosen to verify the accuracy of

the union bound. This code is a regular (3,6) LDPC code of rate 1/2 and length 72 bits.

With this short length, the Hamming weight spectrum of this code can be determined by

searching over all codewords. The bound is computed based on the Hamming distances of 8

to 20. The system is equipped with 2 transmit antennas and 2 receive antennas. The unitary
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space-time modulation consists of 16 symbols based on the orthogonal design with QPSK,

as described in Section 5.3. Thus, the spectral efficiency of the system is 0.5 bit/sec/Hz.

Since the length of the code is short, the OSD-3 decoder (order 3) is used at the receiver.

Two mappings, namely Gray mapping and BICM-ID mapping, are considered. Fig. 5.4

presents the bounds and simulation results on the BER of this coded unitary space-time

modulation system. For Gray mapping, the performance of the system based on OSD

decoder is close to the bound at the practical BER level of 10−6. For BICM-ID mapping,

there is a gap of about 3 dB between the performance of the OSD and the ML bound.

A similar phenomenon was observed for coherent LDPC coded modulation systems over

AWGN and Rayleigh fading channels in Chapter 3. It can also be explained by the fact

that OSD for coded modulation system with the BICM-ID mapping is very suboptimum

due to the PDF of the likelihood ratios, i.e., the soft outputs of the demodulators, that does

not make the performance converge to the ML bound at the observed BER range. This

phenomenon with the suboptimum receivers is also observed for BICM-ID systems with

convolutional codes in [65, 67].
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Figure 5.4 Bounds and simulation results with OSD decoding: A regular LDPC code
of rate 1/2 and length 72 bits.
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A unitary space-time modulation system using an LDPC code of length 200 bits is con-

sidered next. This LDPC code is an irregular LDPC code constructed by the progressive-

edge-growth (PEG) method [50]. The smallest terms of the Hamming distance spectrum

of this code are provided in [50]. At this code length, the OSD decoder cannot be practi-

cally implemented or simulated. Instead, the sum-product (SP) decoding is used with 20

iterations. The same unitary constellation and Gray mapping as in the previous case are

considered here. Fig. 5.5 shows the bounds and simulation results for both systems that

use LDPC codes of length 72 and 200 and decoded with OSD and sum-product decoders,

respectively. The two systems have the same spectral efficiency. For Gray mapping, the

performance of the sum-product decoder can also approach the ML bound at low BER due

to the good convergence of the sum-product algorithm over the considered range of SNR.

Compared to the system using the code of length 72, the performance using the code of

length 200 and the sum-product decoder is superior by 1 dB at the BER level of 10−6. The

bound also shows a gain of 1.8 dB at this BER level with ML decoding. Note that, the

computational complexity of the sum-product decoder is much lower than that of the OSD

even in the cases of short and medium code lengths.

The unitary space-time coded modulation systems are also studied with various number

of receive antennas. The bounds and simulation results are presented in Fig. 5.6 with 2,

3 and 4 receive antennas. A regular LDPC code with a high rate of 433/495 and length

495 is employed for these systems. The finite-length and high-rate codes are proper for

communications systems that require both low latency and high spectral efficiency. The

unitary space-time constellation of 16 symbols and Gray mapping are also employed for

these systems. Fig. 5.6 shows that the performance of the systems using the sum-product

decoder approaches the ML bound with only a small gap of 0.8 dB at the practical BER

level of 10−6. When the number of receive antennas increases from 2 to 3, the performance

improves by 2 dB for both the ML decoder and the sum-product decoder. When the number

of receive antennas increases from 3 to 4, there is only 1 dB gain at the BER level of 10−6.
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Figure 5.5 Bounds and simulation results with sum-product and OSD decoders: LDPC
codes of rate 1/2, lengths 72 and 200 bits, Gray mapping.

5.6 Conclusions

Error performance of non-coherent LDPC coded unitary space-time modulation was

studied in this chapter. The performance bound was derived for the systems constructed

from finite-length LDPC codes and unitary space-time constellations obtained from orthog-

onal design. The analytical derivations were substantiated by simulation results of OSD

and sum-product decoding. Since the bounds are tight at the practical BER, these bounds

can be used to benchmark the performance of LDPC coded unitary space-time modulation

systems with various parameters. Although the bound is derived for the systems based on

LDPC codes, the derivation framework can be applied to coded unitary space-time modu-

lation systems with other finite-length pseudo-random codes such as Turbo codes or Turbo

product codes.
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and length 495 bits.
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6. Adaptive LDPC Coded Modulation for MIMO
Systems

The previous chapters study constant-rate communications systems, where the data

rates are kept constant over all time. In these systems, the code rate and constellation

are chosen and fixed in order to transmit a given data rate. This chapter studies variable-

rate communication systems, whose constellation or code rate are changed over time to

adapt to the channel condition. These variable-rate systems are commonly known as adap-

tive modulation systems. In particular, adaptive modulation systems with multiple transmit

and receive antennas, i.e., for MIMO channels, are investigated in this chapter. One of

the adaptive modulation systems is based on optimum beamforming at both the transmitter

and the receiver. The other two systems are based on antenna selection at the transmitter.

The advantages of these diversity schemes are discussed and their bandwidth efficiencies

are compared for both uncoded and LDPC coded systems. For LDPC coded systems, the

achievable threshold of spectral efficiency is computed based on the maximum likelihood

bound on the error performance derived in Chapter 3.

6.1 Introduction

Wireless communications for future data applications requires high throughput, i. e., a

high data rate, for a large number of users. Meanwhile, the radio transmission bandwidth

is always limited and costly. Therefore, this limited bandwidth should be most efficiently

utilized in future broadband wireless data networks. For many data applications such as

Internet applications, data should be transmitted as fast as possible within limited band-

width. On the other hand, these data applications do not require a constant data rate as in

the case of voice applications. Therefore, it is reasonable to apply rate-variable systems for
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these data applications. Moreover, for fixed wireless channels or mobile channels with low

mobility speeds, the fading coefficients change slowly. This situation for wireless channels

is in contrast to the high mobility speeds assumed in the previous chapters. When the fad-

ing coefficients vary slowly, it is possible to change the date rate of the systems, i. e., the

modulation constellation and the code rate, in order to adapt to the channels.

To implement this adaptation, adaptive modulation techniques [25] are proposed to in-

crease the bandwidth efficiency of these data communications systems. Recently, adaptive

modulation techniques were used for the data mode of 2.5G mobile communication sys-

tems such as the general packet radio service (GPRS) or enhanced data rates for GSM

evolution (EDGE) [106]. In these systems, the transmitters choose a high constellation size

or a high code rate to transmit when the condition of the wireless channel is good. When the

wireless channel is in deep fade, a lower constellation size or a lower code rate is selected.

Here, changing the modulation constellation or code rate should still guarantee a target bit

error rate for the application. In fact, adaptive modulation techniques trade the reliability

of the data stream for the throughput. To vary the constellation and code rate properly,

the channel state information (CSI), i.e., the channel fading coefficients, should be known

at the transmitter. For two-way communications systems, the CSI is often estimated at

the receiver and sent back to the transmitter via a feedback link. Of course, the delay of

this feedback link affects the accuracy of the channel state information at the transmitter.

The CSI can also be obtained by estimating the backward link in the time duplex division

(TDD) systems [107]. Thus, for adaptive modulation systems, the CSI is considered to be

known at both the transmitter and the receiver. Note that, this scenario of CSI availability

is completely opposite to the scenario studied in Chapter 5, where the CSI is unknown at

both the transmitter and the receiver.

As discussed in Chapter 5, employing multiple antennas at both the transmitter and

the receiver is a solution to improve the error performance of the constant-rate systems.

A number of diversity schemes such as space-time codes [20, 21] and Bell Labs layered

space-time schemes [95] have been proposed to exploit the advantages of MIMO channels

without requiring the knowledge of the CSI at the transmitter. For variable-rate systems, the
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MIMO techniques can also improve the throughput or the bandwidth efficiency of wireless

systems. Results of information theory show that the capacities of MIMO channels with

CSI knowledge at the transmitter are much larger than that of the single-input single-output

channel [94]. The capacities of MIMO channels are computed in terms of the bandwidth

efficiency and are realized by adaptive modulation systems with multiple antennas.

In general, the adaptive modulation techniques can be implemented with different an-

tenna diversity schemes at the transmitter and the receiver [108–117]. Several diversity

schemes designed without the knowledge of the CSI at the transmitter such as the space-

time codes [111, 118] or the vertical Bell Labs layered space-time scheme (V-BLAST)

have also been adopted for systems with the CSI knowledge at the transmitter [112, 113,

115,116]. This practice is merely due to the simplicity in implementation of these schemes

at both the transmitter and the receiver. However, these schemes are not optimum in terms

of throughput performance.

It was shown in [94] that the optimum power adaptation policy is implemented by

water-filling over parallel channels that correspond to the eigenvalues of the channel matrix.

Such an adaptation policy is generally referred to as beamforming. Thus, the bit stream

should be divided into substreams in order to be separately modulated and transmitted

over subchannels of eigenvalues. The capacity of a MIMO channel can be theoretically

obtained using a continuous-rate adaptation. This scheme is investigated with different

scenarios of power constraint, characteristics of the MIMO channel and availability of the

CSI in [119–121]. In practice, adaptive systems, however, are discrete-rate systems. This

means that only an integer number of bits is loaded to the subchannels. The throughput

of the system is a collective result due to all the parallel channels. To maintain a given bit

error rate (BER) target, the integer number of loaded bits for each subchannel should be

less than the rate-threshold offered by the continuous-rate scheme. This implies that the

practical throughput is below the theoretical capacity of the system.

Using antenna selection at the transmitter and antenna combining at the receiver is

another approach. This diversity scheme is investigated for a constant-power variable-

rate system with automatic repeat request (ARQ) in [117]. However, the variable-power
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variable-rate system is not investigated and compared to the scheme based on parallel chan-

nels (i.e., beamforming). In selection diversity schemes, the bit stream is loaded to only

one channel instead of many subchannels. Thus, the number of rate regions for this channel

is larger than that for parallel subchannels of the beamforming scheme. This fact implies

a potential of having a better loading over the beamforming scheme. Another important

advantage of the schemes based on antenna selection is that less information needs to be

sent back to the transmitter. In particular, only the parameters concerning one antenna need

to be sent over the feedback link. For the scheme using all antennas at the transmitter, the

parameters for all the antennas should be sent back. Based on the above discussion, it is

of interest to study the practical throughput achieved by the adaptive modulation schemes

using antenna selection and compare it to that of the beamforming scheme. This chap-

ter studies two adaptive modulation schemes that are based on antenna selection (antenna

scheduling) at the transmitter and antenna combining (or selection) at the receiver, together

with the beamforming scheme.

The focus of this chapter is the investigation of the gap in throughput between these

schemes for the cases of continuous-rate and discrete-rate systems. For adaptive modula-

tion, the procedure to compute the system’s parameters relies on the probability density

function (PDF) of the received SNR. These PDFs of the SNRs are derived for the two

antenna selection schemes mentioned earlier.

Adaptive LDPC coded modulation systems are also investigated in this chapter. Since

it is not easy to vary the rate of an LDPC code, only the constellation size and signal power

are varied to adapt to the channel states. The maximum-likelihood performance bound (ML

bound) of the LDPC coded modulation system derived in Chapter 3 is applied to compute

the parameters of the adaptive LDPC coded systems. For finite-length LDPC codes, the

modulation constellation of the adaptive coded modulation remains constant over the length

of codewords. Therefore, besides the advantage of low delay processing, the finite-length

LDPC codes are also convenient for designing adaptive coded modulation systems since

the instant bit error rate can be easily computed for a given code and constellation.
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6.2 Adaptive Modulation Scheme Based on Parallel Subchannels

Consider a frequency-flat fading MIMO channel with Nt transmit antennas and Nr

receive antennas. The received signal over such a channel can be represented as follows:

y = Hx + w (6.1)

In the above equation, the Nr×Nt matrix H represents the fading coefficients of the MIMO

channel. The elements of H are independent complex Gaussian random variables with zero

mean and unit variance. It is assumed that the channel matrix H is available at both the

transmitter and the receiver. The vector x of size Nt × 1 denotes the input of the channel,

i.e., the transmitted signals over the antennas. The output of the channel and additive

white Gaussian noise are represented by Nr × 1 column vectors y and w, respectively.

The elements of w are also independent zero-mean complex Gaussian random variables

with common variance N0/2, where N0/2 is one-sided power spectral density. Note that,

compared to the channel model in the previous chapter, the transmitted and received signals

in (6.1) are considered for only one time interval. The constellations are designed in the 2-

dimensional space and they can be detected by the coherent demodulator. For convenience,

let m = min(Nr, Nt) and n = max(Nr, Nt).

Any channel matrix H can be decomposed into the following form:

H = UDV† (6.2)

where D is an Nr ×Nt diagonal matrix whose diagonal elements are the singular values of

H. The operation (·)† denotes conjugate transpose. The matrices U = [u1, . . . ,uNr
] and

V = [v1, . . . ,vNt
] are Nr×Nr and Nt×Nt unitary matrices whose columns are the left and

right singular vectors of H, respectively. In fact, the singular values
√

λ1,
√

λ2, . . . ,
√

λm

are square roots of the eigenvalues of the matrix HH† and the columns of U and V are

the eigenvectors of HH† and H†H, respectively. Substitute (6.2) into (6.1). With simple

manipulations, the following equations are obtained:

y = UDV†x + w (6.3)

U†y = DV†x + U†w (6.4)

y′ = Dx′ + w′ (6.5)
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where y′ = U†y, x′ = V†x and w′ = U†w. Thus, the MIMO channel H can be de-

composed into m parallel eigen subchannels. The input and output of the equivalent sub-

channels are contained in x′ and y′, respectively. More importantly, the subchannel power

gains are λ1, λ2, . . . , λm. Note that, the characteristics of w′ are kept the same as that of

w over the unitary transformation, i.e., the random variables in both vectors w and w ′ are

independent zero-mean Gaussian random variables with variance N0/2.

If the channel matrix H is deterministic and the instantaneous power is constrained, the

optimum power allocation is achieved by the water-filling solution over the eigen subchan-

nels. However, here, the adaptive scheme is considered over the subchannels of the random

matrix H and the average power is constrained. Therefore, the subchannels are considered

as independent channels and the power adaptation policy is independently implemented

in each channel over time. The block diagram of the adaptive LDPC coded modulation

scheme based on parallel subchannels, referred hereafter as Scheme 1, is depicted in Figure

6.1 and described in the following.
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Figure 6.1 Block diagram of the adaptive modulation scheme based on parallel sub-
channels.

Scheme 1 (Adaptive modulation based on parallel subchannels): The information bit

stream is encoded by an LDPC encoder and is divided to parallel substreams. Then, each

parallel substream is mapped to a symbol in a selected constellation. The constellation and

power level are chosen based on the instantaneous eigenvalues of the subchannels. Thus,

the bits are loaded to the parallel subchannels of the MIMO channel. Then, the symbols
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are transformed by the matrix V before sending to the transmit antennas. At the receiver,

the received signals are re-transformed by the matrix U†. The output of the transformation

block is then demodulated to the information bits.

The signal model of the ith subchannel can be written as:

y′
i = h′

i

√
Siz

′
i + w′

i (6.6)

where, h′
i =

√
λi is the singular gain of the subchannel i. The variable w′

i is complex

additive white Gaussian noise (AWGN) of zero mean and variance N0/2. The variable z′
i

represents a symbol of the constellation Mi. The average power of Mi is normalized to

be one, while the parameter Si determines the actual transmitted power spent for symbol

z′i. Note that, the average power for each subchannel, denoted by S i, is 1/m of the total

average power S of the system and
√

Siz
′
i is equivalent to x′

i of x′ in (6.3). The parameters

Si and Mi are chosen based on the statistical properties of the MIMO channel.

The PDF of each eigenvalue can be written as follows [94]:

pλi
(λ) =

1

m

m−1∑

κ=0

κ!

(κ + n − m)!

[
Ln−m

κ (λ)
]2

λn−me−λ (6.7)

where, LK
p (κ) = 1

κ!
exx−K dκ

dxκ (e−pxK+κ) is the associated Laguerre polynomial of order κ.

Thus, the signal-to-noise ratio (SNR) of each subchannel is γp,i[k] = Siλi[k]/(N0B) =

γp,iλi[k], where B is the bandwidth of the system and γp,i = Si/(N0B). The PDF of the

SNR is:

pγp,i
(γ) =

1

mγp,i

m−1∑

κ=0

κ!

(κ + n − m)!

[
Ln−m

κ

(
γ

γp,i

)]2(
γ

γp,i

)n−m

e
− γ

γp,i (6.8)

This PDF of the SNR plays an important role in the adaptation procedure that shall be

presented in Section 6.4.

6.3 Adaptive Modulation Schemes Based on Antenna Selection

As discussed before, the scheme based on parallel subchannels requires the feedback of

the CSI corresponding to all the antennas and it also requires a bit-loading procedure to all
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the subchannels. Therefore, it is of interest to compare it with other simpler schemes that

are based on antenna selection.

The two adaptive coded modulation schemes based on antenna selection (at the trans-

mitter or at both the transmitter and the receiver) are illustrated in Figure 6.2. The descrip-

tion and analysis of each scheme follows.
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Figure 6.2 Block diagram of adaptive modulation schemes based on antenna selection.

Scheme 2 (Adaptive modulation based on antenna selection at the transmitter): The

mathematical model for this scheme is quite different from the one presented in the previous

subsection due to the fact that the adaptation parameters should be adjusted to only one

virtual channel. When the transmit antenna i is chosen, the received signal vector can be

written as follows:

y = hix + w (6.9)

where vectors y and w represent the receive signal and noise at the receive antennas. The

vector hi contains the channel fading coefficients from the ith antenna to all the receive

antennas, i.e., the ith column of the matrix H in (6.1). The variable x represents the trans-

mitted symbol. The maximum-ratio combiner properly co-phases and weights the received

signals at the receive antennas as follows:

h
†
iy = h

†
ihix + h

†
iw (6.10)

y′ = h′x + w′ (6.11)
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where y′ = h
†
iy, h′ = h

†
ihi and w′ = h

†
iw. Thus, the multiple-antenna system in this case

is equivalent to one channel. The SNR of the maximum ratio combining is:

γc,i = S
h
†
ihi

N0B
=

Nr∑

j=1

γi,j (6.12)

where γi,j is the SNR at the jth receive antenna. Since this adaptive scheme chooses to

transmit over the antenna that has the largest combining SNR at the receiver, the instanta-

neous channel SNR γc is given by

γc = max
1≤i≤Nt

γc,i = max
1≤i≤Nt

Nr∑

j=1

γi,j (6.13)

Next, the PDF of γc can be computed as follows. Each sum γc,i =
∑Nr

j=1 γi,j is an indepen-

dent random variable that has a Chi-squared distribution with 2Nr degrees of freedom, the

expected value γc,i = Nrγ and the variance 2Nrγ, where γ = γi,j = E{γi,j} is the average

SNR of every branch [106]. Thus

pγc,i
(γ) =

γNr−1e−γ/γ

γNrΓ(Nr)
U(γ) (6.14)

The cumulative distribution function (CDF) of γc,i is:

Fγc,i
(γ) =

∫ γ

0

tNr−1e−t/γ

γNrΓ(Nr)
dt =

1

Γ(Nr)
G
(

Nr,
γ

γ

)
(6.15)

Here, the function G is a lower incomplete Gamma function defined as G(α, x) =
∫ x

0
e−ttα−1dt.

The CDF of γc is:

Fγc
(γ) = P (max[γc,1, γc,2, . . . , γc,Nt

] < γ) =
Nt∏

i=1

F (γc,i) =
1

Γ(Nr)Nt
G
(

Nr,
γ

γ

)Nt

(6.16)

which gives the following PDF for γc:

pγc
(γ) =

Nt

γΓ(Nr)Nt
G
(

Nr,
γ

γ

)Nt−1(
γ

γ

)Nr−1

e−
γ

γ U(γ) (6.17)

Scheme 3 (Adaptive modulation based on antenna selections at both the transmitter and

the receiver): In this scheme, the antenna selection block at the transmitter chooses the
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antenna that has the largest gain of the corresponding wireless channel. At the receiver,

selection combining is used. It means that the combiner outputs the signal of the antenna

with the highest gain. Therefore, the fading coefficient of the transmitted signal is:

h′ = arg max
hi,j :1≤i≤Nt,1≤jNr

{|hi,j|} (6.18)

where, |hi,j|2 is the power gain of the channel from the ith transmit antenna to the jth

receive antenna. Thus, only one channel with fading coefficient h′ needs to be considered.

The PDF of the SNR, γs = S|h′|2/(N0B), can be easily computed from the PDF of

γi,j = S|hi,j|2/(N0B). The problem is very similar to the problem of selection combin-

ing [106]. Each transmission link is also stationary, so that every γi,j has the same PDF

p(γi,j). Note that, in the adaptive scheme under consideration, the information signal is

only transmitted over one diversity branch of the channel. However, the system still knows

the instantaneous SNR of each branch (via the pilot signal in the FDD systems or the back-

ward link in the TDD systems). The PDF of γi,j is the PDF of an exponential random

variable. That is

pγi,j
(γ) =

1

γ
e−γ/γU(γ) (6.19)

From (6.18), the instantaneous channel SNR is given by:

γs = max
1≤i≤Nt,1≤j≤Nr

{γi,j} (6.20)

The CDF of γs is therefore:

Fγs
(γ) = P (γs < γ) = P

(
max

1≤i≤Nt,1≤j≤Nr

{γi,j} < γ

)
=

Nt∏

i=1

Nr∏

j=1

Fγi,j
(γ) (6.21)

If the average SNR γi,j of every branch is the same and equals to γ, the differentiation

of (6.21) yields:

pγs
(γ) =

NtNr

γ

[
1 − e−γ/γ

]NtNr−1
e−γ/γU(γ) (6.22)

The average SNR of the scheme is:

γs =

∫ ∞

0

γpγs
(γ)dγ = γ

NtNr∑

i=1

1

i
(6.23)

This average SNR is used in the calculation of the bandwidth efficiency of this scheme

when the equivalent channel is considered for adaptive modulation in the next section.
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6.4 Implementations of Adaptive Modulation Schemes

All the adaptive modulation schemes considered in the previous section are practical

discrete-rate and continuous-power adaptations. This section first presents in detail how

to implement these schemes for uncoded systems. The adaptive LDPC coded systems are

discussed later. Here, procedures to adapt the constellation size and the transmitted power

for each diversity scheme are presented. The sizes of signal constellations are powers of 2

and the transmitted power can be any real value. These important parameters of the adaptive

modulation schemes dynamically change over time to adapt to the equivalent channels.

Consider the following general model of an equivalent channel:

y[k] = h[k]
√

S[k]z[k] + w[k] (6.24)

where k is the time index, y[k], h[k], w[k] represent the received signal, the channel fad-

ing coefficient and noise. Note that these variables correspond, respectively, to y ′ (or y′
i),

h′ (or h′
i) and w′ in (6.6), (6.10) and (6.18). The variable z[k] denotes a symbol of the

constellation M [k]. The average power of the constellation M [k] is also normalized to

one. The parameter S[k] determines the power at time k. Note that the variable
√

S[k]z[k]

corresponds to s in (6.6), (6.10).

At each time index k, the power S[k] and the constellation size M [k] are chosen ac-

cording to the value of the instantaneous channel SNR γp, γc or γs, which correspond to

Schemes 1, 2 and 3, respectively. The selection of S[k] and M [k] should be carried out to

maximize the system throughput, while maintaining the required bit error probability level.

Though the average bit error rate (BER) criterion can be used, here, the instantaneous bit

error rate is considered in our systems.

For uncoded systems, to compute the instantaneous BER for adaptive modulation, the

following upper bound for M -QAM constellation over an AWGN channel is often used

[25]:

BER(γ) ≤ 0.2 exp

[ −1.5γ

M(γ) − 1

S(γ)

S

]
(6.25)

where, γ, S(γ) and M(γ) can be substituted by γp[k] (or γc[k], γs[k]), S[k] and M [k].

Here, the constellation size and the power are presented as functions of γ since they can be
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adapted. Thus, the problem is to find M(γ) and S(γ) in order to maximize the throughput

E{log2 M(γ)}. Simultaneously, the BER computed by (6.25) must be guaranteed to be

below a target BER and the average power is constrained as:
∫ ∞

0

S(γ)p(γ)dγ = S (6.26)

Note that, the PDF of γ for each adaptive scheme (γp, γc or γs) is provided in the previous

sections.

For practical implementation, the constellation size M is an integer. The above opti-

mization problem can only be solved numerically. Since finding the optimum solution is

difficult, a suboptimum solution is presented in [106] and summarized as follows.

First, it is assumed that the constellation size M is continuous. It means that the data

rate of the system can be continuously changed. Although this assumption is impractical,

the throughput computed with this assumption provides the limit for the throughput of the

practical scheme. Due to this assumption, M can be computed as a function of γ when the

target BER is assigned to the right hand side of (6.25). That is

M(γ) = 1 +
1.5γ

− ln(5Pb)

S(γ)

S
= 1 + γK

S(γ)

S
(6.27)

where, K = −1.5
ln(5Pb)

. Now, the problem is to maximize:

E [log2 M(γ)] =

∫ ∞

0

log2

(
1 + Kγ

S(γ)

S

)
p(γ)dγ (6.28)

with the constraint
∫∞

0
S(γ)p(γ)dγ = S. The power adaptation policy for the above prob-

lem is the well-known water-filling solution:

S(γ)

S
=

1

K

(
1

γK

− 1

γ

)+

(6.29)

with γK is the cutoff fade depth, obtained by solving
∫ ∞

γK

(
1

γK

− 1

γ

)
p(γ)dγ = K (6.30)

Substitute (6.29) into (6.27) and (6.28), to obtain the instantaneous rate as:

log2 M(γ) = log2(γ/γK) (6.31)
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and the average spectral efficiency as:

R

B
=

∫ ∞

γK

log2

(
γ

γK

)
p (γ) dγ (6.32)

where R is the bit rate.

Now, the case of discrete M is considered. Assume that M can only be one of N

discrete values, namely M0 = 0,M1 = 2, . . . ,MN−1 = 22(N−1). The constellation size

is determined for a given γ by discretizing the range of the channel fade levels. It means

that the range of γ is divided into N rate regions Rj = [γj−1, γj) with 0 ≤ j ≤ N − 1,

where γ−1 = 0 and γN−1 = ∞. Then the constellation Mj is transmitted when γ ∈ Rj .

The problem becomes to find the optimum boundaries of the rate regions. The computa-

tional complexity to obtain the optimum solution for this integer programming problem is

very high. Therefore, a suboptimum solution is further devised based on the results of the

continuous-rate case.

For the continuous-rate case, the optimum constellation size M is a linear function of γ.

Hence, to find the boundaries of the rate regions, a linear function M(γ) = γ
γ∗

K

is defined.

The coefficient γ∗
K is chosen later for optimization. For a rate region Rj (j < 0 < N − 1),

the boundaries are Mj and Mj+1. For the γ value in the region Rj , i.e., Mj ≤ M(γ) <

Mj+1, the constellation size Mj is chosen. Thus, the largest constellation size, which is

smaller than M(γ), is transmitted.

From (6.27), the power adaptation policy is given by:

Sj(γ)

S
=





(Mj − 1) 1
γK

, Mj < γ
γ∗

K

≤ Mj+1

0, Mj = 0

(6.33)

The final step is to find γ∗
K in order to maximize the following average spectral effi-

ciency:

R

B
=

N−1∑

j=1

log2(Mj)P

(
Mj ≤

γ

γ∗
K

≤ Mj+1

)
=

N−1∑

j=1

log2(Mj)

∫ γ∗
KMj+1

γ∗
K

Mj

p(γ)dγ (6.34)

under the power constraint
N−1∑

j=1

∫ γ∗
KMj+1

γ∗
K

Mj

Sj(γ)

S
p(γ)dγ = 1 (6.35)
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Unfortunately, there is no closed-form solution for this problem, and a numerical technique

needs to be used.

Thus, using the PDFs of the SNRs derived in the previous sections to solve the opti-

mization problem with the objective function in (6.34) and the constraint in (6.35) yields

the parameter γ∗
K . With the solution of γ∗

K , the constellation size and the transmitted power

for each adaptive modulation scheme can be easily determined as described before.

For LDPC coded systems, the BER bound cannot be presented in a closed-form expres-

sion such as (6.25). Therefore, simulation results of the error performance is first utilized.

The LDPC codes are often decoded by the sum-product algorithm [5]. The error perfor-

mance results of LDPC coded modulation systems in Chapter 3 show that performance of

the sum-product algorithm is quite close to the maximum likelihood bound at the practical

BER of data communications (10−6) for systems with medium-length codes. In this chap-

ter, the performance bound for the BER of LDPC coded modulation is also used to compute

the rate regions. The average spectral efficiency corresponding to these rate regions shall

be referred to as “achievable” rate threshold because this rate threshold can be achieved by

using a decoder that performs better than the sum-product decoder, for example, using a

combination between a reliability-based decoder and a sum-product decoder [122].

The LDPC coded system under consideration varies only the modulation size. Hence,

the code and the constellation do not change in each rate region. This means that the

BER target is maintained by only adapting the transmitted power. The power adapta-

tion rule in a rate region must be the channel inversion strategy. That is S(γ) =
γ∗

j

γ
S,

where γ∗
j is the received SNR required to achieve the target BER with this constella-

tion. The value of γ∗
j is obtained from the BER performance of the coded modulation

system over an equivalent AWGN channel based on simulation or bounding technique.

Our optimization problem is to find γ0, . . . , γN in order to maximize the average through-

put R
B

=
∑N

j=1 Rc log2 Mj

∫ γj

γj−1
p(γ)dγ with the power constraint, where Rc is the code

rate. This optimization problem is a non-linear optimization. The Karush-Kuhn-Tucker

condition is often not satisfied for various PDF functions of MIMO channel’s SNR. Here,

a numerical method was used to solve the problem.
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6.5 Numerical Results

Figure 6.3 shows the average spectral efficiency of uncoded MIMO systems with differ-

ent adaptive schemes for the case of continuous-rate adaptation. Although continuous-rate

adaptation is impractical, these results show ultimate limits that can be achieved by the

corresponding discrete-rate schemes. The BER target for numerical results in this section

is set at 10−3, except for the results in Fig. 6.7.
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Figure 6.3 Spectral efficiency of different adaptive schemes for the case of continuous-
rate.

Consider an uncoded MIMO system with two transmit antennas and two receive anten-

nas. Figure 6.3 shows that Scheme 1 offers the highest spectral efficiency among all the

schemes considered, whereas Scheme 2 is superior to Scheme 3. When the SNR increases,

the gap between Scheme 1 and Scheme 2 increases. However, the gap between Schemes 2

and 3 appears to be almost the same over the whole range of SNR. Of course, the efficiency

of all three schemes are identical if there are only one transmit and one receive antenna.

It is appropriate to mention here that the spectral efficiency of Scheme 1 is different

from the Rayleigh channel capacity computed in [94]. Here, the spectral efficiency is
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Figure 6.4 Average spectral efficiency of discrete-rate systems with Scheme 1 (3 rate
regions for each subchannel, 5 rate modes for systems) and Scheme 2 (4
rate regions for the equivalent channel): 2 transmit antennas and 2 receive
antennas.

computed based on the error bound of QAM and for the target BER of 10−3. On the other

hand, the computation of the channel capacity implies the use of an ideal code and at an

arbitrarily small BER. Moreover, the channel capacity of [94] is computed for the case of

no knowledge of the CSI at the transmitter. When the CSI is not available at the transmitter,

the transmitted power is diverged over all directions so that only a power of m
Nt

is used for

each parallel subchannel. This fact can be observed from (6.3), where only m symbols in

Nt symbols of x′ correspond to m non-zero singular values in the diagonal matrix D.

Figure 6.5 illustrates the increment of the average spectral efficiency when the number

of transmit antenna increases. All the systems are equipped with two receive antennas. Ob-

serve that for Scheme 2 and Scheme 3, the average throughput only slightly increases when

increasing the number of transmit antennas. In contrast, the spectral efficiency of Scheme

1 quickly increases with the number of transmit antennas. At high SNR, the spectral effi-

ciency of Scheme 1 tends to saturate when the number of transmit antennas is larger than
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the number of receiver antennas. Recall that the number of parallel subchannels in Scheme

1 is limited by the number of transmit antennas when the number of transmit antennas

is increased beyond the number of receive antennas. If there is only 1 transmit antenna,

Scheme 1 and Scheme 2 are identical. Moreover, the gap between Scheme 2 and Scheme

3 seems to be a constant over both the SNR and the number of transmit antennas.
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Figure 6.5 Average spectral efficiency as a function of the number of transmit antennas
for continuous-rate adaptive schemes. The number of receive antenna is 2.

The average spectral efficiency for discrete-rate systems is shown in Fig. 6.4. For the

ease of comparison the efficiency of continuous-rate systems is also provided. Here, all the

systems use two transmit and two receive antennas. Observe that there is a significant gap

in spectral efficiency between Scheme 1 and Scheme 2 for the case of continuous-rate. But,

interestingly, these two schemes are comparable for the discrete-rate systems as far as the

maximum data rate is concerned. At low SNR range, the spectral efficiency of Scheme 1
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is higher than that of Scheme 2. However, at the SNR range closer to that of the maximum

rate, the spectral efficiency of Scheme 2 is higher than that of Scheme 1. These results and

observation can be explained as follows.

Recall that, the spectral efficiency of Scheme 1 is a sum of two parallel subchannels.

Here, each channel can only employ 3 rate regions of 0, 1 and 2 loaded bits. For the

whole system, the number of rate regions is 5 which are from 0 to 4 loaded bits. On the

other hand, Scheme 2 employs 4 rate regions of 0, 1, 2 and 4 loaded bits. Thus, with the

same maximum rate, the possible number of rate regions for parallel channels is always

smaller than the number of rate regions in selection diversity scheme. This is precisely

the reason for spectral efficiency reduction when compared to the potential capacity of the

continuous-rate adaptation. Another reason is due to the different forms of the probability

density functions of the SNRs in the three schemes. Fig. 6.6 shows the PDFs of the SNRs

for the equivalent channels of all three adaptive schemes, where the same average SNR

per path is set at 10dB. Although the sum of the continuous-rate throughput of Scheme 1’s

two subchannels is higher than the continuous-rate throughput of Scheme 2, the large part

of continuous-rate throughput of Scheme 1 is resulted from the low SNR range that has a

high density for Scheme 1’s subchannels. When only an integer number of discrete-rates is

employed, this part of throughput will be smaller because the power allocation will not be

optimum in order to compensate for the high density of this low SNR range.

Figure 6.7 shows the gap in spectral efficiency between Scheme 1 and Scheme 2 for

discrete-rate systems. The systems are either 2 × 2 or 3 × 3 MIMO systems. The gap of

spectral efficiency is considered at two BER targets of 10−3 and 10−6. For the BER target

of 10−3, the spectral efficiency of Scheme 1 is superior to that of Scheme 2 in the SNR

range from 6 dB to 10 dB and inferior to that of Scheme 2 in the SNR range from 10 dB to

20 dB. Observe that the size of the gap between the two schemes is the same for different

BER targets. However, the curves are shifted to the right for a lower BER target because

it requires a higher SNR to reach the same throughput of a better reliability. When the

numbers of transmit and receive antennas increase from 2 to 3, the spectral efficiency of

Scheme 1 increases faster compared to Scheme 2. The SNR range, in which Scheme 2 is
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Figure 6.6 Probability density functions of the SNRs for equivalent channels in three
diversity schemes with the same average SNR per path.

superior to Scheme 1, is smaller.
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Table 6.1 Required SNR of coded modulation systems with a regular LDPC code of
rate 433/495 and length 495 to achieve BER of 10−6.

M Modulation Spectral Eb/N0 (dB) SNR (dB)
efficiency simulation bound simulation bound

1 BPSK 0.85 6.3 4.7 5.59 3.99
2 QPSK 1.75 6.3 4.7 8.73 7.13
3 8PSK 2.62 9.4 7.7 13.58 11.88
4 16QAM 3.5 10.6 8.3 16.04 13.74

For adaptive coded modulation systems, a regular (3,6) LDPC code with a high rate

of 433/495 and a length of 495 coded bits is employed. Because the constellation often

remains constant over tens to hundreds of symbols for typical adaptive modulation systems

[106], this code length is proper for practical implementation. For the target BER error

of 10−6, the required Eb/N0 levels (where Eb is the average energy of an information

bit) of the coded modulation system are tabulated in Table 6.1 for different constellation

sizes. Note that, the channel SNR is Es/N0 which is equivalent to Rc log2(M)Eb/N0. The

required Eb/N0 levels can also be obtained by maximum likelihood bound (ML bound).

Figure 6.8 shows the practical spectral efficiency, the achievable rate thresholds and the

channel capacity of an adaptive coded modulation system using 2 transmit and 2 receive

antennas. Here, each subchannel of Scheme 1 employs 3 rate regions, corresponding to

QPSK, BPSK and no transmission. Similar to uncoded systems, the number of possible

rates are 5 when combining subchannels rates. Scheme 2 is considered with 3 rate regions,

corresponding to 0, 2 and 4 loaded bits. It is observed that the spectral efficiency of Scheme

2 is superior to that of Scheme 1 over the whole considered range of SNR. This fact can

be explained by a better bit loading in this SNR range of Scheme 2 for coded systems.

The gaps between the achievable rate threshold (based on ML bounds) and the practical

spectral efficiency (based on the sum-product decoder) are about 1.7 dB at the average

spectral efficiency of 2 bits/s/Hz for both schemes. Due to the use of finite-length LDPC

codes, the gap between the channel capacity and the practical spectral efficiency of both

schemes is quite large.
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Figure 6.8 Spectral efficiency of adaptive LDPC coded systems with 2 transmit and 2
receive antennas.

6.6 Conclusions

Comparison of spectral efficiency among different adaptive antenna diversity schemes

based on antenna beamforming and antenna selection has been carried out in this chapter.

The average spectrum efficiency is investigated for various parameters of the systems, in-

cluding the average SNR of a path, the numbers of transmit and receive antennas, and the

BER target level. For continuous-rate systems, the scheme based on parallel subchannels

clearly outperforms other schemes based on antenna selection. However, these two diver-

sity techniques are comparable for practical discrete-rate systems. Over a certain range of

SNR, the scheme with antenna selection at the transmitter and maximum ratio combining

at the receiver is, even, superior to the beamforming scheme when the number of transmit

antennas is small. Adaptive LDPC coded modulation systems also exhibit similar results

because of the better bit loading in transmit antenna selection schemes. Given the reduc-

tion in feedback information and simplicity, the antenna selection schemes can be attractive

candidates for systems of appropriate parameters.
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7. Conclusions

7.1 Summary of Contributions

This thesis was mainly devoted to the analysis of bandwidth-efficient communication

systems based on finite-length LDPC codes. In Chapters 3 and 4, two basic bandwidth-

efficient LDPC coded modulation schemes, namely LDPC coded modulation and multi-

level LDPC coded modulation, were investigated for the AWGN and frequency-flat Rayleigh

fading channels. In these schemes, the coded bits of LDPC codes are grouped and mapped

to 2-dimentional signal constellations, i.e., multiple-amplitude/multiple-phase constella-

tions. At the receiver, three types of decoders, including the maximum likelihood (ML),

the sum-product and the ordered-statistic decoders are considered. Performance of the

ML receiver is analyzed by the union bound. On the other hand, the performance of the

receivers based on the sum-product and ordered-statistic decoders are investigated by com-

puter simulation. For LDPC coded modulation systems in Chapter 3, the main contribution

is the derivation of the performance bound for the ML receiver. The derived bound is

mainly based on the union bounding technique. However, due to the random construc-

tion of LDPC codes, this performance bound can only be obtained by averaging over the

randomly permuted code ensemble. Here, combinatoric techniques are used to transform

the Hamming distance spectrum of the LDPC code and the Euclidean distance profile of

the constellation to the Euclidean distance spectrum of the LDPC coded modulation. This

ML bound is tight for the receiver based on OSD, hence, it can be used to benchmark the

LDPC coded modulation system using OSD. For LDPC coded modulation system based

on the sum-product decoding, the ML bound is also close to the simulation result at low

BER and for medium-length codes. The iterative demodulation/decoding are carried out
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for OSD and sum-product decoder, but improvement due to this outer iteration is negli-

gible. In Chapter 4, the derivation framework developed in Chapter 3 is extended to the

generalized multilevel LDPC coded modulation systems. In these systems, more than one

coded bit of one encoder is used for each level. Although the derivation of the bound for

each level is similar to that of coded modulation, the computation of the Euclidean distance

profile of the constellation is different due to the effect on other levels to the current level

under consideration. Simulation results with both OSD and sum-product decoding show

the tightness of the bounds for all decoding levels over the AWGN channel as well as the

Rayleigh fading channel. Therefore, these performance bounds can be used as tools in

choosing parameters of systems such as the constellation, mapping and code rate.

The second part of the thesis, including Chapters 5 and 6, focuses on LDPC coded

MIMO systems that are important to further improve the bandwidth efficiency of wire-

less data transmission. Two scenarios of wireless channels considered are fast fading and

slow fading which correspond to high and low mobility speeds of the wireless terminals.

Chapter 5 studies LDPC coded unitary space-time modulation systems, where the channel

state information is unknown to both the transmitter and the receiver. Therefore, the uni-

tary space-time constellations, that are designed and optimized for MIMO systems in this

scenario are employed at the transmitter. For LDPC coded unitary space-time modulation

systems, the combinatoric techniques in Chapter 3 can still be applied to derive the perfor-

mance bound. However, the procedure needs to transform the Hamming distance spectrum

of the finite-length LDPC code to a summation of chordal distances in Grassmanian mani-

folds instead of the the Euclidean distance as in the case of LDPC coded modulation. The

tightness of the derived bound is also confirmed by the performances of the OSD and the

sum-product decoding. The situation that the CSI is known at both the transmitter and the

receiver is considered in Chapter 6. In this chapter, the adaptive LDPC coded modulation

technique is applied for multiple transmit and multiple receive antenna systems. Three

diversity schemes based on antenna beamforming and antenna selection are investigated

and compared in terms of throughput. For discrete-rate adaptive modulation, computa-

tion of bandwidth efficiencies of these diversity schemes shows a better performance for
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the scheme with antenna selection at the transmitter and antenna combining at the receiver

when the number of antennas is small. For adaptive LDPC coded MIMO systems, a thresh-

old of bandwidth efficiency is determined from the ML bound of LDPC coded modulation

system derived in Chapter 3. This threshold can be achieved by LDPC decoders whose

performance is close to that of the ML decoder.

7.2 Suggestions for Further Studies

The derivation framework of the performance bound can be applied to many other

bandwidth-efficient communication systems over various wireline as well as wireless chan-

nels. For the frequency-flat Rician or Nakagami fading channels, where the adjacent sym-

bols are not overlapped, the difference in the derivation is mainly due to the pairwise error

probabilities. For frequency-selective fading channels, the consecutive symbols are over-

lapped and more complicated combinatoric techniques need to be used.

As discussed in Chapter 3, the union bound is considered to be tight in the SNR range

above the threshold [Eb/N0]
∗ corresponding to the cut-off rate. Other bounding techniques

are of interest for performance evaluation at lower SNR. For coded modulation with BPSK

constellation, tangential sphere bound [52] and Gallager’s bound [5,53,54] are tight bounds

at the low SNR range. The tangential sphere bound is also used for performance evaluation

of M -PSK coded modulation scheme constructed from algebraic codes [123]. For the

derivation of these bounds, all terms of the Hamming distance spectrum of the code and

the corresponding Euclidean distance spectrum of the coded modulation frame need to

be known. However, when these bounds are applied to coded modulation systems based

on pseudo-random codes such as LDPC codes, the number of Euclidean distance terms

of the coded modulation frame corresponding to a Hamming distance can be very large

when the Hamming distance is big. This means that the computation of the bound is very

difficult, if not impossible. An approximation method can be a solution to this problem of

computational complexity.

The tangential sphere bound and Gallager’s bound are developed based on the union

bound, which is the simplest inequality from a larger class of the so-called Bonferroni-type
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inequalities in probability theory. The bounding techniques using a high-order Bonferroni-

type inequality can improve the tightness of the bound as shown in [124, 125] for coded

systems with BPSK modulation. The application of high-order Bonferroni-type inequali-

ties for coded modulation system with high-order constellation and pseudo-random codes

might yield the tighter bound in a wider range of SNR. However, the bounds derived from

high-order Bonferroni-type inequalities are often complicated and requires the global geo-

metrical properties of the code.

Chapters 5 and 6 of this thesis studied the bandwidth-efficient LDPC coded MIMO

communication systems, where the space diversity and time diversity are emphasized.

Further studies can be carried out with frequency diversity techniques, i.e., using multi-

carrier techniques such as orthogonal frequency division multiplexing (OFDM) or discrete

multitone (DMT). These techniques have proved to have immunity to impulse noise and

frequency-selective fading. For frequency-selective fading channels, the multi-carrier tech-

niques reduce the rate of data stream in each frequency band to make the channel over each

frequency band become a frequency flat channel. To analyze LDPC coded multi-carrier

systems, the symbols sent over the multiple dimensions of the carriers should be consid-

ered together. The LDPC coded communication systems, that combine the methods of

frequency and space diversities, for example MIMO-OFDM systems are also of interest to

analyze.

In all bandwidth-efficient LDPC coded communication systems, a group of coded bits

is mapped to a signal symbol before transmitting over the channel. One can expect that

LDPC codes constructed over Galois fields of order Q > 2 [126] can have some advan-

tages. For this system, a group of q coded bits is mapped to one symbol of the 2q-QAM

constellation. The application of LDPC codes in GF (Q) and a proper mapping of q coded

bits to 2q-QAM constellation can improve the smallest term of the Euclidean distance spec-

trum of the coded modulation frame, hence improving the performance. The disadvantage

of LDPC codes in GF (Q) is the high decoding complexity of the sum-product algorithm.

The analysis of such systems is of interest in order to compare with the performance of the

coded modulation systems based on binary LDPC codes.
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The practical implementation of the bandwidth-efficient LDPC coded communication

systems in hardware is also a natural topic for further studies. The hardware implementa-

tion of these systems can be an application-specific integrated circuits (ASIC) or a program

of hardware description language (VHDL or Verilog) for the field programmable gate ar-

rays (FPGA) [127]. The FPGA implementation of encoder/decoder algorithms is becoming

more suitable for high-speed real-time applications and easily integrated to other intellec-

tual properties of the systems on chip (SoC). In these implementations, the algorithms of

the encoder/decoder need to be appropriately discretized instead of using real numbers as

in the original algorithms.
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A. Proof of the Check Node Processing Equation

This appendix presents the proof of the check node processing equation in Chapter 2.

To prove Equation (2.24), the following lemma is needed:

Lemma: Consider a sequence of m independent binary digits in which the lth digit is a 1

with probability Pl. Then the probability that an even number of digits are 1 is:

1 +
∏m

l=1(1 − 2Pl)

2
(A.1)

Proof of the Lemma: [5] Consider the function

m∏

l=1

(1 − Pl + Plt) (A.2)

Observe that if this is expanded into a polynomial in t, the coefficient of ti is the probability

of i 1’s. The function
∏m

l=1(1 − Pl − Plt) is identical except that all the odd powers of t

are negative. Adding these two functions, all the even powers of t are doubled, and the odd

terms cancel out. Finally letting t = 1 and dividing by 2, the result is the probability of

even number of ones. But
∏m

l=1(1 − Pl + Pl) +
∏m

l=1(1 − Pl − Pl)

2
=

1 +
∏m

l=1(1 − 2Pl)

2
(A.3)

Thus, the lemma is proved.

Now, when the incoming message qij , corresponding to the probabilities Pqij
(vi = 0)

and Pqij
(vi = 1) come to a check node cj , we need to compute rij , corresponding to the

extrinsic probabilities Prij
(vi = 0) and Prij

(vi = 1), from a set of qi′j with i′ ⊂ I(j) \ i,

that contains variable nodes connected to check node cj except the check node vi. Using
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the Lemma, one has:

Prij
(vi = 0) = P (vi = 0|qi′j, ci = 0) (A.4)

= P (even number of 1s in I(j) \ i) (A.5)

=
1 +

∏
i′∈I(j)\i(1 − 2Pqi′j

(v′
i = 1))

2
(A.6)

and

Prij
(vi = 1) = 1 − P (even number of 1s inI(j) \ i) (A.7)

=
1 −∏i′∈I(j)\i(1 − 2Pqi′j

(v′
i = 1))

2
(A.8)

Therefore,

rij = log
Prij

(vi = 0)

Prij
(vi = 1)

(A.9)

= log
1 +

∏
i′∈I(j)\i(1 − 2Pqi′j

(v′
i = 1))

1 −∏i′∈I(j)\i(1 − 2Pqi′j
(v′

i = 1))
(A.10)

The derivation to (2.24), i.e.,

rij = log
1 +

∏
i′∈I(j)\i tanh(qi′j/2)

1 −∏i′∈I(j)\i tanh(qi′j/2)

is straightforward with qi′j = log
Pq

i′j
(v′

i=0)

Pq
i′j

(v′
i=1)

= log
1−Pq

i′j
(v′

i=1)

Pq
i′j

(v′
i=1)

and tanh(qi′j/2) = e
q
i′j−1

e
q
i′j +1

.
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B. An Example of Check Node Processing

This appendix gives an example of the step-by-step procedure of check node processing

in order to illustrate the mechanism of the belief propagation algorithm.

Assume that a check node c1 is connected to three variable nodes v1, v2, v3. When

variable nodes v1 and v2 send messages q1,1 and q2,1, respectively, a message r3,1 needs to

be computed at the check node c1 as in Figure B.1. Messages q1,1, q2,1 and r3,1 are extrinsic

LAPPRs of variable nodes v1, v2 and v3, respectively.

It is difficult to imagine the mechanism of check node processing in LAPPRs. Thus, the

probabilities are used to present the step-by-step procedure. The probabilities are computed

from LAPPRs as follows:

• Probability of the variable node v1 = 0 given by q1,1 is Pq1,1(v1 = 0) = eq1,1

1+eq1,1 . This

is because q1,1 = log
Pq1,1 (v1=0)

Pq1,1 (v1=1)
= log

Pq1,1 (v1=0)

1−Pq1,1 (v1=0)
.

• Probability of the variable node v1 = 1 given by q1,1 is Pq1,1(v1 = 1) = 1
1+eq1,1 , since

q1,1 = log
Pq1,1 (v1=0)

Pq1,1 (v1=1)
= log

1−Pq1,1 (v1=1)

Pq1,1 (v1=1)
.

• Probability of the variable node v2 = 0 given by q2,1 is Pq2,1(v2 = 0) =
eq
2,1

1+eq2,1 , since

q2,1 = log
Pq2,1 (v2=0)

Pq2,1 (v2=1)
= log

Pq2,1 (v2=0)

1−Pq2,1 (v2=0)
.

Table B.1 Example of Probabilities Values.
v1 v2 v3

q1,1 q2,1 r3,1

Pq1,1(v1 = 0) = 0.7 Pq2,1(v2 = 0) = 0.4 Pr3,1(v3 = 0) =?
Pq1,1(v1 = 1) = 0.3 Pq2,1(v2 = 1) = 0.6 Pr3,1(v3 = 1) =?
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Figure B.1 Example of message processing at the check node c1.

• Probability of the variable node v2 = 1 given by q2,1 is Pq2,1(v1 = 1) = 1
1+eq2,1 , since

q2,1 = log
Pq2,1 (v2=0)

Pq2,1 (v2=1)
= log

1−Pq2,1 (v2=1)

Pq2,1 (v2=1)

Now, for example, we have the values of Pq1,1(v1 = 0), Pq1,1(v1 = 1), Pq2,1(v2 =

0), Pq2,1(v1 = 1) as in Table B.1. Our objective is to compute the probabilities Pr3,1(v3 =

0), Pr3,1(v3 = 1) when v1 + v2 + v3 = 0 by the parity check equation at check node c1. All

the possibilities that can have v1 + v2 + v3 = 0 are listed in Table B.2.

The probability of the variable node v3 = 0 given by r3,1 is Pr3,1(v3 = 0) = 0.28 +

0.18 = 0.46. The probability of the variable node v3 = 1 given by r3,1 is Pr3,1(v3 =

1) = 0.42 + 0.12 = 0.54. Then, the message r3,1 = log
Pr3,1 (v3=0)

Pr3,1 (v3=1)
= log 0.46

0.54
= −0.16.
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Table B.2 Probabilities of all cases satisfying the parity check equation.
v1 v2 v3 Probability
0 0 0 0.7 × 0.4 = 0.28
0 1 1 0.7 × 0.6 = 0.42
1 0 1 0.3 × 0.4 = 0.12
1 1 0 0.3 × 0.6 = 0.18

So, r3,1 = −0.16 has been computed from q1,1 = log
Pq1,1 (v1=0)

Pq1,1 (v1=1)
= log 0.7

0.3
= 0.84 and

q2,1 = log
Pq2,1 (v2=0)

Pq2,1 (v2=1)
= log 0.4

0.6
= −0.41.
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C. The Hamming Distance Spectra of Several LDPC
Codes

1. The regular (3,6) LDPC code of rate 1/2 and length 24:

N (4) = 8; N (14) = 972;

N (6) = 52; N (16) = 367;

N (8) = 367; N (18) = 52;

N (10) = 972; N (20) = 8;

N (12) = 1296; N (24) = 1;

2. The regular (3,6) LDPC code of rate 1/2 and length 72:

N (6) = 1; N (38) = 11534400347;

N (8) = 28; N (40) = 8314036051;

N (10) = 246; N (42) = 4793685822;

N (12) = 2267; N (44) = 2198313637;

N (14) = 21536; N (46) = 797876668;

N (16) = 189757; N (48) = 229046391;

N (18) = 1463871; N (50) = 52289661;

N (20) = 9637162; N (52) = 9637162;

N (22) = 52289661; N (54) = 1463871;

N (24) = 229046391; N (56) = 189757;

N (26) = 797876668; N (58) = 21536;

N (28) = 2198313637; N (60) = 2267;

N (30) = 4793685822; N (62) = 246;
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N (32) = 8314036051; N (64) = 28;

N (34) = 11534400357; N (66) = 1;

N (36) = 12857549996; N (72) = 1;

3. The irregular LDPC code of rate 1/3, length 72 and λ(x) = x2, ρ(x) = 0.5x5+0.5x6:

N (8) = 4; N (36) = 2536231;

N (10) = 14; N (38) = 2633226;

N (12) = 57; N (40) = 2027427;

N (14) = 281; N (42) = 1290789;

N (16) = 1092; N (44) = 673670;

N (18) = 4316; N (46) = 291107;

N (20) = 14916; N (48) = 102581;

N (22) = 46543; N (50) = 29497;

N (24) = 128411; N (52) = 7097;

N (26) = 313653; N (54) = 1387;

N (28) = 668411; N (56) = 210;

N (30) = 1230176; N (58) = 32;

N (32) = 1926450; N (60) = 2;

N (34) = 2549636;

4. The irregular LDPC code of rate 1/2, length 200 and λ(x) = 0.31570x+0.26758x2+

0.41672x6, ρ(x) = 0.4381x5 + 0.5619x6:

N (8) = 2; N (14) = 97;

N (9) = 1; N (15) = 224;

N (10) = 5; N (16) = 592;

N (11) = 12; N (17) = 1339;

N (12) = 32; N (18) = 2964;

N (13) = 54; N (19) = 6515;
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5. The regular (3,6) LDPC code of rate 433/495 and length 495:

N (4) = 25.9; N (12) = 213.6;

N (6) = 28.2; N (14) = 215.0;

N (8) = 210.2; N (16) = 216.5;

N (10) = 212.1; N (18) = 217.2;
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D. Derivation of Performance Bound for Stage 2 of the
MLC System

Let x be the symbol sequence of length N
(2)
s = N (2)/q2, which corresponds to a code-

word c(2)
m of C(2) and other coded bits of C(1). Consider a received sequence y resulted

from the transmission of x. If the coded bits of code C (1) are perfectly known for Stage 2

decoding, the number of possible sequences x is 2R(2)N(2)
. The ML rule chooses the closest

x to the received sequence y among all the 2R(2)N(2)
possible sequences.

The union bound of bit error probability for Stage 2 under ML decoding can be written

as:

P (2)
e ≤ 1

2R(2)N(2)

∑

x

∑

x′ 6=x

W
(2)
x,x′

N (2)
Pr(x → x′) (D.1)

where Pr(x → x′) is the pairwise error probability when x is transmitted, but x′ is decided

at the receiver. The parameter W
(2)
x,x′ is the Hamming distance of two codewords c(2)

m and

c(2)
m′ of C(2) obtained by demapping the two sequences x and x′, respectively. The union

bound averaged over permuted LDPC ensemble can then be written as follows:

P
(2)

e ≤ E

[
1

2R(2)N(2)

∑

x

∑

x′ 6=x

W
(2)
x,x′

N (2)
Pr(x → x′)

]
(D.2)

Similar to derivation of the performance bound for State 1, the pairwise error probabili-

ties Pr(x → x′) with the same type of error sequences n(2) are grouped together to compute

the union bound as:

P
(2)

e ≤
N(2)∑

l=l
(2)
min

N
(2)
s∑

n
(2)
1 =0

· · ·
N

(2)
s∑

n
(2)
q2

=0

l

N (2)
f(n(2))E

[
Q

(
Dn(2)√
2N0

)]
(D.3)

Note that, the effective error coefficient does not appear for State 2. This is because the
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coded bits of Stage 1 are already decided and the multiplicity of the number of nearest

neighbors is simply set to one.

The function f(n(2)) is computed as in (3.15) and (3.16). Here, the parameters corre-

sponding to Stage 2 f(n(2)), Pl,n(2) , N (2)(l), and N (2) are substituted for f(n), Pl,n, N (l),

and N in (3.15) and (3.16), respectively.

The total distance Dn(2) , a random variable, can be computed from the single symbol

error distances D
(2)
k that are also random variables as (Dn(2))

2 =
∑N

(2)
s

k=1

(
D

(2)
k

)2

. Then,

the final form of the union bound for Stage 2 decoding is as follows:

P
(2)

e ≤
N(2)∑

l=l
(2)
min

N
(2)
s∑

n
(2)
1 =0

· · ·
N

(2)
s∑

n
(2)
q2

=0

k
n
(2)∑

j=1

l

N (2)
f(n(2))pn(2),jQ

(
∆n(2),j√

2N0

)
(D.4)

where pn(2),j = P [D2
n(2),j

= ∆2
n(2),j

], j = 1, 2, . . . , kn(2) . Here, kn(2) is the number of

distinguishable Euclidean distances and each of them has a probability pn(2),j . The random

variable D2
n(2) can take on the following values:

∆2
n(2),j =

q2∑

i=0

hmax∑

h=1

n
(2)
i,h(d

(2)
i,h)2 (D.5)

The probability of D2
n(2) = ∆2

n(2),j
with a given set of n

(2)
i,h is:

pn(2),j =
2∏

i=0

(
n

(2)
i

n
(2)
i,0 , . . . , n

(2)
i,h

) hmax∏

h=0

p
(2)
i,h

n
(2)
i,h (D.6)
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