687 research outputs found

    On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting Method

    Full text link
    Robust machine learning is currently one of the most prominent topics which could potentially help shaping a future of advanced AI platforms that not only perform well in average cases but also in worst cases or adverse situations. Despite the long-term vision, however, existing studies on black-box adversarial attacks are still restricted to very specific settings of threat models (e.g., single distortion metric and restrictive assumption on target model's feedback to queries) and/or suffer from prohibitively high query complexity. To push for further advances in this field, we introduce a general framework based on an operator splitting method, the alternating direction method of multipliers (ADMM) to devise efficient, robust black-box attacks that work with various distortion metrics and feedback settings without incurring high query complexity. Due to the black-box nature of the threat model, the proposed ADMM solution framework is integrated with zeroth-order (ZO) optimization and Bayesian optimization (BO), and thus is applicable to the gradient-free regime. This results in two new black-box adversarial attack generation methods, ZO-ADMM and BO-ADMM. Our empirical evaluations on image classification datasets show that our proposed approaches have much lower function query complexities compared to state-of-the-art attack methods, but achieve very competitive attack success rates.Comment: accepted by ICCV 201

    Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent

    Full text link
    Despite the great achievements of the modern deep neural networks (DNNs), the vulnerability/robustness of state-of-the-art DNNs raises security concerns in many application domains requiring high reliability. Various adversarial attacks are proposed to sabotage the learning performance of DNN models. Among those, the black-box adversarial attack methods have received special attentions owing to their practicality and simplicity. Black-box attacks usually prefer less queries in order to maintain stealthy and low costs. However, most of the current black-box attack methods adopt the first-order gradient descent method, which may come with certain deficiencies such as relatively slow convergence and high sensitivity to hyper-parameter settings. In this paper, we propose a zeroth-order natural gradient descent (ZO-NGD) method to design the adversarial attacks, which incorporates the zeroth-order gradient estimation technique catering to the black-box attack scenario and the second-order natural gradient descent to achieve higher query efficiency. The empirical evaluations on image classification datasets demonstrate that ZO-NGD can obtain significantly lower model query complexities compared with state-of-the-art attack methods.Comment: accepted by AAAI 202

    You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle

    Full text link
    Deep learning achieves state-of-the-art results in many tasks in computer vision and natural language processing. However, recent works have shown that deep networks can be vulnerable to adversarial perturbations, which raised a serious robustness issue of deep networks. Adversarial training, typically formulated as a robust optimization problem, is an effective way of improving the robustness of deep networks. A major drawback of existing adversarial training algorithms is the computational overhead of the generation of adversarial examples, typically far greater than that of the network training. This leads to the unbearable overall computational cost of adversarial training. In this paper, we show that adversarial training can be cast as a discrete time differential game. Through analyzing the Pontryagin's Maximal Principle (PMP) of the problem, we observe that the adversary update is only coupled with the parameters of the first layer of the network. This inspires us to restrict most of the forward and back propagation within the first layer of the network during adversary updates. This effectively reduces the total number of full forward and backward propagation to only one for each group of adversary updates. Therefore, we refer to this algorithm YOPO (You Only Propagate Once). Numerical experiments demonstrate that YOPO can achieve comparable defense accuracy with approximately 1/5 ~ 1/4 GPU time of the projected gradient descent (PGD) algorithm. Our codes are available at https://https://github.com/a1600012888/YOPO-You-Only-Propagate-Once.Comment: Accepted as a conference paper at NeurIPS 201

    SoK: Pitfalls in Evaluating Black-Box Attacks

    Full text link
    Numerous works study black-box attacks on image classifiers. However, these works make different assumptions on the adversary's knowledge and current literature lacks a cohesive organization centered around the threat model. To systematize knowledge in this area, we propose a taxonomy over the threat space spanning the axes of feedback granularity, the access of interactive queries, and the quality and quantity of the auxiliary data available to the attacker. Our new taxonomy provides three key insights. 1) Despite extensive literature, numerous under-explored threat spaces exist, which cannot be trivially solved by adapting techniques from well-explored settings. We demonstrate this by establishing a new state-of-the-art in the less-studied setting of access to top-k confidence scores by adapting techniques from well-explored settings of accessing the complete confidence vector, but show how it still falls short of the more restrictive setting that only obtains the prediction label, highlighting the need for more research. 2) Identification the threat model of different attacks uncovers stronger baselines that challenge prior state-of-the-art claims. We demonstrate this by enhancing an initially weaker baseline (under interactive query access) via surrogate models, effectively overturning claims in the respective paper. 3) Our taxonomy reveals interactions between attacker knowledge that connect well to related areas, such as model inversion and extraction attacks. We discuss how advances in other areas can enable potentially stronger black-box attacks. Finally, we emphasize the need for a more realistic assessment of attack success by factoring in local attack runtime. This approach reveals the potential for certain attacks to achieve notably higher success rates and the need to evaluate attacks in diverse and harder settings, highlighting the need for better selection criteria

    Semantically Controllable Generation of Physical Scenes with Explicit Knowledge

    Full text link
    Deep Generative Models (DGMs) are known for their superior capability in generating realistic data. Extending purely data-driven approaches, recent specialized DGMs may satisfy additional controllable requirements such as embedding a traffic sign in a driving scene, by manipulating patterns \textit{implicitly} in the neuron or feature level. In this paper, we introduce a novel method to incorporate domain knowledge \textit{explicitly} in the generation process to achieve semantically controllable scene generation. We categorize our knowledge into two types to be consistent with the composition of natural scenes, where the first type represents the property of objects and the second type represents the relationship among objects. We then propose a tree-structured generative model to learn complex scene representation, whose nodes and edges are naturally corresponding to the two types of knowledge respectively. Knowledge can be explicitly integrated to enable semantically controllable scene generation by imposing semantic rules on properties of nodes and edges in the tree structure. We construct a synthetic example to illustrate the controllability and explainability of our method in a clean setting. We further extend the synthetic example to realistic autonomous vehicle driving environments and conduct extensive experiments to show that our method efficiently identifies adversarial traffic scenes against different state-of-the-art 3D point cloud segmentation models satisfying the traffic rules specified as the explicit knowledge.Comment: 14 pages, 6 figures. Under revie
    • …
    corecore