13 research outputs found

    Coded Federated Computing in Wireless Networks with Straggling Devices and Imperfect CSI

    Full text link
    Distributed computing platforms typically assume the availability of reliable and dedicated connections among the processors. This work considers an alternative scenario, relevant for wireless data centers and federated learning, in which the distributed processors, operating on generally distinct coded data, are connected via shared wireless channels accessed via full-duplex transmission. The study accounts for both wireless and computing impairments, including interference, imperfect Channel State Information, and straggling processors, and it assumes a Map-Shuffle-Reduce coded computing paradigm. The total latency of the system, obtained as the sum of computing and communication delays, is studied for different shuffling strategies revealing the interplay between distributed computing, coding, and cooperative or coordinated transmission.Comment: Submitted for possible conference publicatio

    On the Fundamental Feedback-vs-Performance Tradeoff over the MISO-BC with Imperfect and Delayed CSIT

    Full text link
    This work considers the multiuser multiple-input single-output (MISO) broadcast channel (BC), where a transmitter with M antennas transmits information to K single-antenna users, and where - as expected - the quality and timeliness of channel state information at the transmitter (CSIT) is imperfect. Motivated by the fundamental question of how much feedback is necessary to achieve a certain performance, this work seeks to establish bounds on the tradeoff between degrees-of-freedom (DoF) performance and CSIT feedback quality. Specifically, this work provides a novel DoF region outer bound for the general K-user MISO BC with partial current CSIT, which naturally bridges the gap between the case of having no current CSIT (only delayed CSIT, or no CSIT) and the case with full CSIT. The work then characterizes the minimum CSIT feedback that is necessary for any point of the sum DoF, which is optimal for the case with M >= K, and the case with M=2, K=3.Comment: An initial version of this paper has been reported as Research Report No. RR-12-275 at EURECOM, December 7, 2012. This paper was submitted in part to the ISIT 201
    corecore