207,931 research outputs found

    Solving kk-SUM using few linear queries

    Full text link
    The kk-SUM problem is given nn input real numbers to determine whether any kk of them sum to zero. The problem is of tremendous importance in the emerging field of complexity theory within PP, and it is in particular open whether it admits an algorithm of complexity O(nc)O(n^c) with c<k2c<\lceil \frac{k}{2} \rceil. Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees and algebraic computation trees of depth O(n3log3n)O(n^3\log^3 n) solving kk-SUM. Furthermore, we show that there exists a randomized algorithm that runs in O~(nk2+8)\tilde{O}(n^{\lceil \frac{k}{2} \rceil+8}) time, and performs O(n3log3n)O(n^3\log^3 n) linear queries on the input. Thus, we show that it is possible to have an algorithm with a runtime almost identical (up to the +8+8) to the best known algorithm but for the first time also with the number of queries on the input a polynomial that is independent of kk. The O(n3log3n)O(n^3\log^3 n) bound on the number of linear queries is also a tighter bound than any known algorithm solving kk-SUM, even allowing unlimited total time outside of the queries. By simultaneously achieving few queries to the input without significantly sacrificing runtime vis-\`{a}-vis known algorithms, we deepen the understanding of this canonical problem which is a cornerstone of complexity-within-PP. We also consider a range of tradeoffs between the number of terms involved in the queries and the depth of the decision tree. In particular, we prove that there exist o(n)o(n)-linear decision trees of depth o(n4)o(n^4)

    Threesomes, Degenerates, and Love Triangles

    Full text link
    The 3SUM problem is to decide, given a set of nn real numbers, whether any three sum to zero. It is widely conjectured that a trivial O(n2)O(n^2)-time algorithm is optimal and over the years the consequences of this conjecture have been revealed. This 3SUM conjecture implies Ω(n2)\Omega(n^2) lower bounds on numerous problems in computational geometry and a variant of the conjecture implies strong lower bounds on triangle enumeration, dynamic graph algorithms, and string matching data structures. In this paper we refute the 3SUM conjecture. We prove that the decision tree complexity of 3SUM is O(n3/2logn)O(n^{3/2}\sqrt{\log n}) and give two subquadratic 3SUM algorithms, a deterministic one running in O(n2/(logn/loglogn)2/3)O(n^2 / (\log n/\log\log n)^{2/3}) time and a randomized one running in O(n2(loglogn)2/logn)O(n^2 (\log\log n)^2 / \log n) time with high probability. Our results lead directly to improved bounds for kk-variate linear degeneracy testing for all odd k3k\ge 3. The problem is to decide, given a linear function f(x1,,xk)=α0+1ikαixif(x_1,\ldots,x_k) = \alpha_0 + \sum_{1\le i\le k} \alpha_i x_i and a set ARA \subset \mathbb{R}, whether 0f(Ak)0\in f(A^k). We show the decision tree complexity of this problem is O(nk/2logn)O(n^{k/2}\sqrt{\log n}). Finally, we give a subcubic algorithm for a generalization of the (min,+)(\min,+)-product over real-valued matrices and apply it to the problem of finding zero-weight triangles in weighted graphs. We give a depth-O(n5/2logn)O(n^{5/2}\sqrt{\log n}) decision tree for this problem, as well as an algorithm running in time O(n3(loglogn)2/logn)O(n^3 (\log\log n)^2/\log n)

    Solving k-SUM Using Few Linear Queries

    Get PDF
    The k-SUM problem is given n input real numbers to determine whether any k of them sum to zero. The problem is of tremendous importance in the emerging field of complexity theory within P, and it is in particular open whether it admits an algorithm of complexity O(n^c) with c<d where d is the ceiling of k/2. Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees and algebraic computation trees of depth O(n^3 log^2 n) solving k-SUM. Furthermore, we show that there exists a randomized algorithm that runs in ~O(n^{d+8}) time, and performs O(n^3 log^2 n) linear queries on the input. Thus, we show that it is possible to have an algorithm with a runtime almost identical (up to the +8) to the best known algorithm but for the first time also with the number of queries on the input a polynomial that is independent of k. The O(n^3 log^2 n) bound on the number of linear queries is also a tighter bound than any known algorithm solving k-SUM, even allowing unlimited total time outside of the queries. By simultaneously achieving few queries to the input without significantly sacrificing runtime vis-a-vis known algorithms, we deepen the understanding of this canonical problem which is a cornerstone of complexity-within-P. We also consider a range of tradeoffs between the number of terms involved in the queries and the depth of the decision tree. In particular, we prove that there exist o(n)-linear decision trees of depth ~O(n^3) for the k-SUM problem

    Fourier Growth of Parity Decision Trees

    Get PDF
    We prove that for every parity decision tree of depth d on n variables, the sum of absolute values of Fourier coefficients at level ? is at most d^{?/2} ? O(? ? log(n))^?. Our result is nearly tight for small values of ? and extends a previous Fourier bound for standard decision trees by Sherstov, Storozhenko, and Wu (STOC, 2021). As an application of our Fourier bounds, using the results of Bansal and Sinha (STOC, 2021), we show that the k-fold Forrelation problem has (randomized) parity decision tree complexity ??(n^{1-1/k}), while having quantum query complexity ? k/2?. Our proof follows a random-walk approach, analyzing the contribution of a random path in the decision tree to the level-? Fourier expression. To carry the argument, we apply a careful cleanup procedure to the parity decision tree, ensuring that the value of the random walk is bounded with high probability. We observe that step sizes for the level-? walks can be computed by the intermediate values of level ? ?-1 walks, which calls for an inductive argument. Our approach differs from previous proofs of Tal (FOCS, 2020) and Sherstov, Storozhenko, and Wu (STOC, 2021) that relied on decompositions of the tree. In particular, for the special case of standard decision trees we view our proof as slightly simpler and more intuitive. In addition, we prove a similar bound for noisy decision trees of cost at most d - a model that was recently introduced by Ben-David and Blais (FOCS, 2020)

    A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

    Get PDF
    We show that the k-SUM problem can be solved by a linear decision tree of depth O(n^2 log^2 n),improving the recent bound O(n^3 log^3 n) of Cardinal et al. Our bound depends linearly on k, and allows us to conclude that the number of linear queries required to decide the n-dimensional Knapsack or SubsetSum problems is only O(n^3 log n), improving the currently best known bounds by a factor of n. Our algorithm extends to the RAM model, showing that the k-SUM problem can be solved in expected polynomial time, for any fixed k, with the above bound on the number of linear queries. Our approach relies on a new point-location mechanism, exploiting "Epsilon-cuttings" that are based on vertical decompositions in hyperplane arrangements in high dimensions. A major side result of the analysis in this paper is a sharper bound on the complexity of the vertical decomposition of such an arrangement (in terms of its dependence on the dimension). We hope that this study will reveal further structural properties of vertical decompositions in hyperplane arrangements

    Optimal Direct Sum Results for Deterministic and Randomized Decision Tree Complexity

    Full text link
    A Direct Sum Theorem holds in a model of computation, when solving some k input instances together is k times as expensive as solving one. We show that Direct Sum Theorems hold in the models of deterministic and randomized decision trees for all relations. We also note that a near optimal Direct Sum Theorem holds for quantum decision trees for boolean functions.Comment: 7 page

    A System for Induction of Oblique Decision Trees

    Full text link
    This article describes a new system for induction of oblique decision trees. This system, OC1, combines deterministic hill-climbing with two forms of randomization to find a good oblique split (in the form of a hyperplane) at each node of a decision tree. Oblique decision tree methods are tuned especially for domains in which the attributes are numeric, although they can be adapted to symbolic or mixed symbolic/numeric attributes. We present extensive empirical studies, using both real and artificial data, that analyze OC1's ability to construct oblique trees that are smaller and more accurate than their axis-parallel counterparts. We also examine the benefits of randomization for the construction of oblique decision trees.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl
    corecore