414,436 research outputs found

    Counting the spanning trees of the 3-cube using edge slides

    Full text link
    We give a direct combinatorial proof of the known fact that the 3-cube has 384 spanning trees, using an "edge slide" operation on spanning trees. This gives an answer in the case n=3 to a question implicitly raised by Stanley. Our argument also gives a bijective proof of the n=3 case of a weighted count of the spanning trees of the n-cube due to Martin and Reiner.Comment: 17 pages, 9 figures. v2: Final version as published in the Australasian Journal of Combinatorics. Section 5 shortened and restructured; references added; one figure added; some typos corrected; additional minor changes in response to the referees' comment

    Note on islands in path-length sequences of binary trees

    Full text link
    An earlier characterization of topologically ordered (lexicographic) path-length sequences of binary trees is reformulated in terms of an integrality condition on a scaled Kraft sum of certain subsequences (full segments, or islands). The scaled Kraft sum is seen to count the set of ancestors at a certain level of a set of topologically consecutive leaves is a binary tree.Comment: 4 page

    Boosting insights in insurance tariff plans with tree-based machine learning methods

    Full text link
    Pricing actuaries typically operate within the framework of generalized linear models (GLMs). With the upswing of data analytics, our study puts focus on machine learning methods to develop full tariff plans built from both the frequency and severity of claims. We adapt the loss functions used in the algorithms such that the specific characteristics of insurance data are carefully incorporated: highly unbalanced count data with excess zeros and varying exposure on the frequency side combined with scarce, but potentially long-tailed data on the severity side. A key requirement is the need for transparent and interpretable pricing models which are easily explainable to all stakeholders. We therefore focus on machine learning with decision trees: starting from simple regression trees, we work towards more advanced ensembles such as random forests and boosted trees. We show how to choose the optimal tuning parameters for these models in an elaborate cross-validation scheme, we present visualization tools to obtain insights from the resulting models and the economic value of these new modeling approaches is evaluated. Boosted trees outperform the classical GLMs, allowing the insurer to form profitable portfolios and to guard against potential adverse risk selection

    A lower bound for nodal count on discrete and metric graphs

    Full text link
    According to a well-know theorem by Sturm, a vibrating string is divided into exactly N nodal intervals by zeros of its N-th eigenfunction. Courant showed that one half of Sturm's theorem for the strings applies to the theory of membranes: N-th eigenfunction cannot have more than N domains. He also gave an example of a eigenfunction high in the spectrum with a minimal number of nodal domains, thus excluding the existence of a non-trivial lower bound. An analogue of Sturm's result for discretizations of the interval was discussed by Gantmacher and Krein. The discretization of an interval is a graph of a simple form, a chain-graph. But what can be said about more complicated graphs? It has been known since the early 90s that the nodal count for a generic eigenfunction of the Schrodinger operator on quantum trees (where each edge is identified with an interval of the real line and some matching conditions are enforced on the vertices) is exact too: zeros of the N-th eigenfunction divide the tree into exactly N subtrees. We discuss two extensions of this result in two directions. One deals with the same continuous Schrodinger operator but on general graphs (i.e. non-trees) and another deals with discrete Schrodinger operator on combinatorial graphs (both trees and non-trees). The result that we derive applies to both types of graphs: the number of nodal domains of the N-th eigenfunction is bounded below by N-L, where L is the number of links that distinguish the graph from a tree (defined as the dimension of the cycle space or the rank of the fundamental group of the graph). We also show that if it the genericity condition is dropped, the nodal count can fall arbitrarily far below the number of the corresponding eigenfunction.Comment: 15 pages, 4 figures; Minor corrections: added 2 important reference

    Combinatorics of Rooted Trees and Hopf Algebras

    Full text link
    We begin by considering the graded vector space with a basis consisting of rooted trees, graded by the count of non-root vertices. We define two linear operators on this vector space, the growth and pruning operators, which respectively raise and lower grading; their commutator is the operator that multiplies a rooted tree by its number of vertices. We define an inner product with respect to which the growth and pruning operators are adjoint, and obtain several results about the multiplicities associated with each operator. The symmetric algebra on the vector space of rooted trees (after a degree shift) can be endowed with a coproduct to make a Hopf algebra; this was defined by Kreimer in connection with renormalization. We extend the growth and pruning operators, as well as the inner product mentioned above, to Kreimer's Hopf algebra. On the other hand, the vector space of rooted trees itself can be given a noncommutative multiplication: with an appropriate coproduct, this gives the Hopf algebra of Grossman and Larson. We show the inner product on rooted trees leads to an isomorphism of the Grossman-Larson Hopf algebra with the graded dual of Kreimer's Hopf algebra, correcting an earlier result of Panaite.Comment: 19 pages; final revision has minor corrections, slightly expanded sect. 4 and additional reference
    • …
    corecore