11,503 research outputs found

    Track-oriented multiple hypothesis tracking based on Tabu search and Gibbs sampling

    Get PDF
    In order to circumvent the curse of dimensionality in multiple hypothesis tracking data association, this paper proposes two efficient implementation algorithms using Tabu search and Gibbs sampling. As the first step, we formulate the problem of generating the best global hypothesis in multiple hypothesis tracking as the problem of finding a maximum weighted independent set of a weighted undirected graph. Then, the metaheuristic Tabu search with two basic movements is designed to find the global optimal solution of the problem formulated. To improve the computational efficiency, this paper also develops a sampling based algorithm based on Gibbs sampling. The problem formulated for the Tabu search-based algorithm is reformulated as a maximum product problem to enable the implementation of Gibbs sampling. The detailed algorithm is then designed and the convergence is also theoretically analyzed. The performance of the two algorithms proposed are verified through numerical simulations and compared with that of a mainstream multiple dimensional assignment implementation algorithm. The simulation results confirm that the proposed algorithms significantly improve the computational efficiency while maintaining or even enhancing the tracking performance

    Integrating genetic algorithms, tabu search, and simulatedannealing for the unit commitment problem

    Get PDF
    This paper presents a new algorithm based on integrating genetic algorithms, tabu search and simulated annealing methods to solve the unit commitment problem. The core of the proposed algorithm is based on genetic algorithms. Tabu search is used to generate new population members in the reproduction phase of the genetic algorithm. A simulated annealing method is used to accelerate the convergence of the genetic algorithm by applying the simulated annealing test for all the population members. A new implementation of the genetic algorithm is introduced. The genetic algorithm solution is coded as a mix between binary and decimal representation. The fitness function is constructed from the total operating cost of the generating units without penalty terms. In the tabu search part of the proposed algorithm, a simple short-term memory procedure is used to counter the danger of entrapment at a local optimum, and the premature convergence of the genetic algorithm. A simple cooling schedule has been implemented to apply the simulated annealing test in the algorithm. Numerical results showed the superiority of the solutions obtained compared to genetic algorithms, tabu search and simulated annealing methods, and to two exact algorithm

    Integrating genetic algorithms, tabu search, and simulatedannealing for the unit commitment problem

    Get PDF
    This paper presents a new algorithm based on integrating genetic algorithms, tabu search and simulated annealing methods to solve the unit commitment problem. The core of the proposed algorithm is based on genetic algorithms. Tabu search is used to generate new population members in the reproduction phase of the genetic algorithm. A simulated annealing method is used to accelerate the convergence of the genetic algorithm by applying the simulated annealing test for all the population members. A new implementation of the genetic algorithm is introduced. The genetic algorithm solution is coded as a mix between binary and decimal representation. The fitness function is constructed from the total operating cost of the generating units without penalty terms. In the tabu search part of the proposed algorithm, a simple short-term memory procedure is used to counter the danger of entrapment at a local optimum, and the premature convergence of the genetic algorithm. A simple cooling schedule has been implemented to apply the simulated annealing test in the algorithm. Numerical results showed the superiority of the solutions obtained compared to genetic algorithms, tabu search and simulated annealing methods, and to two exact algorithm

    Integrating Genetic Algorithms, Tabu Search, And Simulated Annealing For The Unit Commitment Problem

    Get PDF
    This paper presents a new algorithm based on integrating genetic algorithms, tabu search and simulated annealing methods to solve the unit commitment problem. The core of the proposed algorithm is based on genetic algorithms. Tabu search is used to generate new population members in the reproduction phase of the genetic algorithm. Simulated annealing method is used to accelerate the convergence of the genetic algorithm by applying the simulated annealing test for all the population members. A new implementation of the genetic algorithm is introduced. The genetic algorithm solution is coded as a mix between binary and decimal representation. The fitness function is constructed from the total operating cost of the generating units without penalty terms. In the tabu search part of the proposed algorithm, a simple short-term memory procedure is used to counter the danger of entrapment at a local optimum, and the premature convergence of the genetic algorithm. A simple cooling schedule has been implemented to apply the simulated annealing test in the algorithm. Numerical results showed the superiority of the solutions obtained compared to genetic algorithms, tabu search and simulated annealing methods, and to two exact algorithms

    A New Genetic-Based Tabu Search Algorithm For Unit Commitment Problem

    Get PDF
    This paper presents a new algorithm based on integrating the use of genetic algorithms and tabu search methods to solve the unit commitment problem. The proposed algorithm, which is mainly based on genetic algorithms incorporates tabu search method to generate new population members in the reproduction phase of the genetic algorithm. In the proposed algorithm, genetic algorithm solution is coded as a mix between binary and decimal representation. A fitness function is constructed from the total operating cost of the generating units without penalty terms. In the tabu search part of the algorithm, a simple short term memory procedure is used to counterthe danger of entrapment at a local optimum by preventing cycling of solutions, and the premature convergence of the genetic algorithm. A significant improvement of the proposed algorithm results, over those obtained by either genetic algorithm or tabu search, has been achieved. Numerical examples also showed the superiority of the proposed algorithm compared with two classical methods in the literature

    A New Genetic-Based Tabu Search Algorithm For Unit Commitment Problem

    Get PDF
    This paper presents a new algorithm based on integrating the use of genetic algorithms and tabu search methods to solve the unit commitment problem. The proposed algorithm, which is mainly based on genetic algorithms incorporates tabu search method to generate new population members in the reproduction phase of the genetic algorithm. In the proposed algorithm, genetic algorithm solution is coded as a mix between binary and decimal representation. A fitness function is constructed from the total operating cost of the generating units without penalty terms. In the tabu search part of the algorithm, a simple short term memory procedure is used to counterthe danger of entrapment at a local optimum by preventing cycling of solutions, and the premature convergence of the genetic algorithm. A significant improvement of the proposed algorithm results, over those obtained by either genetic algorithm or tabu search, has been achieved. Numerical examples also showed the superiority of the proposed algorithm compared with two classical methods in the literature
    corecore