21,017 research outputs found

    Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure

    Full text link
    EXECUTIVE SUMMARY: This document is a report on the workshop entitled “Integrating Electric Mobility Systems with the Grid Infrastructure” which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources – primarily delivered in the form of electricity – to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services – both public and private – that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Workshop funded by the Alfred P. Sloan Foundatio

    Electric Power Allocation in a Network of Fast Charging Stations

    Get PDF
    In order to increase the penetration of electric vehicles, a network of fast charging stations that can provide drivers with a certain level of quality of service (QoS) is needed. However, given the strain that such a network can exert on the power grid, and the mobility of loads represented by electric vehicles, operating it efficiently is a challenging problem. In this paper, we examine a network of charging stations equipped with an energy storage device and propose a scheme that allocates power to them from the grid, as well as routes customers. We examine three scenarios, gradually increasing their complexity. In the first one, all stations have identical charging capabilities and energy storage devices, draw constant power from the grid and no routing decisions of customers are considered. It represents the current state of affairs and serves as a baseline for evaluating the performance of the proposed scheme. In the second scenario, power to the stations is allocated in an optimal manner from the grid and in addition a certain percentage of customers can be routed to nearby stations. In the final scenario, optimal allocation of both power from the grid and customers to stations is considered. The three scenarios are evaluated using real traffic traces corresponding to weekday rush hour from a large metropolitan area in the US. The results indicate that the proposed scheme offers substantial improvements of performance compared to the current mode of operation; namely, more customers can be served with the same amount of power, thus enabling the station operators to increase their profitability. Further, the scheme provides guarantees to customers in terms of the probability of being blocked by the closest charging station. Overall, the paper addresses key issues related to the efficient operation of a network of charging stations.Comment: Published in IEEE Journal on Selected Areas in Communications July 201

    On the Evaluation of Plug-in Electric Vehicle Data of a Campus Charging Network

    Get PDF
    The mass adoption of plug-in electric vehicles (PEVs) requires the deployment of public charging stations. Such facilities are expected to employ distributed generation and storage units to reduce the stress on the grid and boost sustainable transportation. While prior work has made considerable progress in deriving insights for understanding the adverse impacts of PEV chargings and how to alleviate them, a critical issue that affects the accuracy is the lack of real world PEV data. As the dynamics and pertinent design of such charging stations heavily depend on actual customer demand profile, in this paper we present and evaluate the data obtained from a 1717 node charging network equipped with Level 22 chargers at a major North American University campus. The data is recorded for 166166 weeks starting from late 20112011. The result indicates that the majority of the customers use charging lots to extend their driving ranges. Also, the demand profile shows that there is a tremendous opportunity to employ solar generation to fuel the vehicles as there is a correlation between the peak customer demand and solar irradiation. Also, we provided a more detailed data analysis and show how to use this information in designing future sustainable charging facilities.Comment: Accepted by IEEE Energycon 201

    Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees

    Get PDF
    The operation of the power grid is becoming more stressed, due to the addition of new large loads represented by Electric Vehicles (EVs) and a more intermittent supply due to the incorporation of renewable sources. As a consequence, the coordination and control of projected EV demand in a network of fast charging stations becomes a critical and challenging problem. In this paper, we introduce a game theoretic based decentralized control mechanism to alleviate negative impacts from the EV demand. The proposed mechanism takes into consideration the non-uniform spatial distribution of EVs that induces uneven power demand at each charging facility, and aims to: (i) avoid straining grid resources by offering price incentives so that customers accept being routed to less busy stations, (ii) maximize total revenue by serving more customers with the same amount of grid resources, and (iii) provide charging service to customers with a certain level of Quality-of-Service (QoS), the latter defined as the long term customer blocking probability. We examine three scenarios of increased complexity that gradually approximate real world settings. The obtained results show that the proposed framework leads to substantial performance improvements in terms of the aforementioned goals, when compared to current state of affairs.Comment: Accepted for Publication in IEEE Transactions on Smart Gri

    Investing in America\u27s Surface Transportation Infrastructure: The Need for a Multi-Year Reauthorization Bill: Hearing Before the S. Comm. on Env\u27t & Pub. Works, 116th Cong., July 10, 2019

    Get PDF
    The Fourth National Climate Assessment, released in November 2018, described the serious impacts of climate change already being felt throughout the U.S., and made clear that the risks to communities all across the country are growing rapidly. These findings, along with those in the 2018 Intergovernmental Panel on Climate Change (IPCC) report should serve as an immediate call to action. Even if we manage to limit planetary warming to just 2 degrees Celsius, the world will still face increased chances of economic and social upheaval from more severe flooding, droughts, heatwaves, and other climate impacts as well as devastating environmental consequences, the IPCC report warns. The consensus from leading scientific research academies within the United States and internationally is clear: multiple lines of evidence indicate, and have indicated for years, that our atmosphere is warming, sea levels are rising, the magnitude and frequency of certain extreme weather events is increasing, and that human activity is the primary driver of climate change. As described in the IPCC Special Report, the consensus is that countries around the world must rapidly decarbonize their economies, cutting greenhouse gas emissions in half by 2030 and to near zero by 2050. The U.S. Department of Defense, and leaders within the defense and national security communities, have also recognized climate change as a “national security issue” that requires adapting military operations and planning to ensure readiness. Despite our understanding of the consequences we will face and the urgency to act, U.S. GHG emissions from fossil fuel combustion increased by 2.7 percent in 2018, according the Rhodium Group. Clearly more action is needed. While we all recognize the importance of transportation in our daily lives and for our economy, it is also important to recognize that the transportation sector is the largest contributor of GHG emissions in the United States, and is already facing significant impacts from climate change. There is an urgent need, therefore, to transition to a low-carbon and more resilient transportation system. Such a transition would not only reduce emissions and fight climate change, it also would bring additional important benefits, including protecting public health by reducing conventional air pollution, providing more mobility options, and driving innovation and economic growth through policy action and through public and private investment

    EV charging stations and RES-based DG: A centralized approach for smart integration in active distribution grids

    Get PDF
    Renewable Energy Sources based (RES-based) Dispersed Generation (DG) and Electrical Vehicles (EVs) charging systems diffusion is in progress in many Countries around the word. They have huge effects on the distribution grids planning and operation, particularly on MV and LV distribution grids. Many studies on their impact on the power systems are ongoing, proposing different approaches of managing. The present work deals with a real application case of integration of EVs charging stations with ES-based DG. The final task of the integration is to be able to assure the maximum utilization of the distribution grid to which both are connected, without any upgrading action, and in accordance with Distribution System Operators (DSOs) needs. The application of the proposed approach is related to an existent distribution system, owned by edistribuzione, the leading DSO in Italy. Diverse types of EVs supplying stations, with diverse diffusion scenarios, have been assumed for the case study; various Optimal Power Flow (OPF) models, based on diverse objective functions, reflecting DSO necessities, have been applied and tried. The obtained results demonstrate that a centralized management approach by the DSO, could assure the respect of operation limits of the system in the actual asset, delaying or avoiding upgrading engagements and charges

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Examining How Federal Infrastructure Policy Could Help Mitigate and Adapt to Climate Change: Hearing Before the H. Comm. on Transp. & Infrastructure, 116th Cong., Feb. 26, 2019 (Statement of Vicki Arroyo)

    Get PDF
    As the Fourth National Climate Assessment, released in November, describes, the United States is already experiencing serious impacts of climate change—and the risks to communities all across the country are growing rapidly. These findings, along with those in the 2018 Intergovernmental Panel on Climate Change (IPCC)report, are clear and should be a call to immediate action. Even if we manage to limit planetary warming to just 2 degrees C, the world will still face increased chances of economic and social upheaval from more severe flooding, droughts, heatwaves, and other climate impacts as well as devastating environmental consequences, the IPCC report warns. The scientific consensus as described in the IPCC Special Report is that countries around the world must rapidly decarbonize their economies, cutting greenhouse gas emissions in half by 2030 and to near zero by 2050. Yet the current trends are going in the wrong direction. Despite our increasing understanding of the narrowing window to act, U.S. GHG emissions increased by 3.4% in 2018, according to a January report from the Rhodium Group. Clearly more action is needed. The encouraging news is that many states and cities have committed to taking action. They are taking steps to reduce emissions through legislation, executive orders, and pledges made in collaborations such as the US Climate Alliance –now covering roughly half the US population and GDP. In my testimony, I will be focusing on the transportation sector, which is the largest contributor of GHG emissions in the United States, and is already facing significant impacts from climate change. Federal standards have been important in increasing efficiency and reducing emissions, yet transportation-sector emissions are increasing as more vehicle miles are driven, more freight is transported in trucks, and airline travel continues to grow. Transportation is becoming an increasingly large share of U.S. economy-wide emissions as the power sector decarbonizes as a result of market shifts and policy. There is an urgent need, therefore, to transition to a low-carbon transportation system. Such a transition would not only reduce emissions and fight climate change, it also would bring additional important benefits, including protecting public health by reducing conventional air pollution, providing more mobility options, and driving innovation and economic growth through policy action and through public and private investment
    • …
    corecore