15,458 research outputs found

    The 2+12+1 convex hull of a finite set

    Full text link
    We study R2⊕R\mathbb{R}^2\oplus\mathbb{R}-separately convex hulls of finite sets of points in R3\mathbb{R}^3, as introduced in \cite{KirchheimMullerSverak2003}. When R3\mathbb{R}^3 is considered as a certain subset of 3×23\times 2 matrices, this notion of convexity corresponds to rank-one convex convexity KrcK^{rc}. If R3\mathbb{R}^3 is identified instead with a subset of 2×32\times 3 matrices, it actually agrees with the quasiconvex hull, due to a recent result \cite{HarrisKirchheimLin18}. We introduce "2+12+1 complexes", which generalize TnT_n constructions. For a finite set KK, a "2+12+1 KK-complex" is a 2+12+1 complex whose extremal points belong to KK. The "2+12+1-complex convex hull of KK", KccK^{cc}, is the union of all 2+12+1 KK-complexes. We prove that KccK^{cc} is contained in the 2+12+1 convex hull KrcK^{rc}. We also consider outer approximations to 2+12+1 convexity based in the locality theorem \cite[4.7]{Kirchheim2003}. Starting with a crude outer approximation we iteratively chop off "DD-prisms". For the examples in \cite{KirchheimMullerSverak2003}, and many others, this procedure reaches a "2+12+1 KK-complex" in a finite number of steps, and thus computes the 2+12+1 convex hull. We show examples of finite sets for which this procedure does not reach the 2+12+1 convex hull in finite time, but we show that a sequence of outer approximations built with DD-prisms converges to a 2+12+1 KK-complex. We conclude that KrcK^{rc} is always a "2+12+1 KK-complex", which has interesting consequences

    Numerical Computation of Rank-One Convex Envelopes

    Get PDF
    We describe an algorithm for the numerical computation of the rank-one convex envelope of a function f:\MM^{m\times n}\rightarrow\RR. We prove its convergence and an error estimate in L∞

    Noise Thresholds for Higher Dimensional Systems using the Discrete Wigner Function

    Full text link
    For a quantum computer acting on d-dimensional systems, we analyze the computational power of circuits wherein stabilizer operations are perfect and we allow access to imperfect non-stabilizer states or operations. If the noise rate affecting the non-stabilizer resource is sufficiently high, then these states and operations can become simulable in the sense of the Gottesman-Knill theorem, reducing the overall power of the circuit to no better than classical. In this paper we find the depolarizing noise rate at which this happens, and consequently the most robust non-stabilizer states and non-Clifford gates. In doing so, we make use of the discrete Wigner function and derive facets of the so-called qudit Clifford polytope i.e. the inequalities defining the convex hull of all qudit Clifford gates. Our results for robust states are provably optimal. For robust gates we find a critical noise rate that, as dimension increases, rapidly approaches the the theoretical optimum of 100%. Some connections with the question of qudit magic state distillation are discussed.Comment: 14 pages, 1 table; Minor changes vs. version

    Separable and Low-Rank Continuous Games

    Full text link
    In this paper, we study nonzero-sum separable games, which are continuous games whose payoffs take a sum-of-products form. Included in this subclass are all finite games and polynomial games. We investigate the structure of equilibria in separable games. We show that these games admit finitely supported Nash equilibria. Motivated by the bounds on the supports of mixed equilibria in two-player finite games in terms of the ranks of the payoff matrices, we define the notion of the rank of an n-player continuous game and use this to provide bounds on the cardinality of the support of equilibrium strategies. We present a general characterization theorem that states that a continuous game has finite rank if and only if it is separable. Using our rank results, we present an efficient algorithm for computing approximate equilibria of two-player separable games with fixed strategy spaces in time polynomial in the rank of the game

    Majorisation with applications to the calculus of variations

    Get PDF
    This paper explores some connections between rank one convexity, multiplicative quasiconvexity and Schur convexity. Theorem 5.1 gives simple necessary and sufficient conditions for an isotropic objective function to be rank one convex on the set of matrices with positive determinant. Theorem 6.2 describes a class of possible non-polyconvex but multiplicative quasiconvex isotropic functions. This class is not contained in a well known theorem of Ball (6.3 in this paper) which gives sufficient conditions for an isotropic and objective function to be polyconvex. We show here that there is a new way to prove directly the quasiconvexity (in the multiplicative form). Relevance of Schur convexity for the description of rank one convex hulls is explained.Comment: 13 page

    Computing a Nonnegative Matrix Factorization -- Provably

    Full text link
    In the Nonnegative Matrix Factorization (NMF) problem we are given an n×mn \times m nonnegative matrix MM and an integer r>0r > 0. Our goal is to express MM as AWA W where AA and WW are nonnegative matrices of size n×rn \times r and r×mr \times m respectively. In some applications, it makes sense to ask instead for the product AWAW to approximate MM -- i.e. (approximately) minimize \norm{M - AW}_F where \norm{}_F denotes the Frobenius norm; we refer to this as Approximate NMF. This problem has a rich history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In the past decade NMF has become enormously popular in machine learning, where AA and WW are computed using a variety of local search heuristics. Vavasis proved that this problem is NP-complete. We initiate a study of when this problem is solvable in polynomial time: 1. We give a polynomial-time algorithm for exact and approximate NMF for every constant rr. Indeed NMF is most interesting in applications precisely when rr is small. 2. We complement this with a hardness result, that if exact NMF can be solved in time (nm)o(r)(nm)^{o(r)}, 3-SAT has a sub-exponential time algorithm. This rules out substantial improvements to the above algorithm. 3. We give an algorithm that runs in time polynomial in nn, mm and rr under the separablity condition identified by Donoho and Stodden in 2003. The algorithm may be practical since it is simple and noise tolerant (under benign assumptions). Separability is believed to hold in many practical settings. To the best of our knowledge, this last result is the first example of a polynomial-time algorithm that provably works under a non-trivial condition on the input and we believe that this will be an interesting and important direction for future work.Comment: 29 pages, 3 figure
    • …
    corecore