32 research outputs found

    Recognising Multidimensional Euclidean Preferences

    Full text link
    Euclidean preferences are a widely studied preference model, in which decision makers and alternatives are embedded in d-dimensional Euclidean space. Decision makers prefer those alternatives closer to them. This model, also known as multidimensional unfolding, has applications in economics, psychometrics, marketing, and many other fields. We study the problem of deciding whether a given preference profile is d-Euclidean. For the one-dimensional case, polynomial-time algorithms are known. We show that, in contrast, for every other fixed dimension d > 1, the recognition problem is equivalent to the existential theory of the reals (ETR), and so in particular NP-hard. We further show that some Euclidean preference profiles require exponentially many bits in order to specify any Euclidean embedding, and prove that the domain of d-Euclidean preferences does not admit a finite forbidden minor characterisation for any d > 1. We also study dichotomous preferencesand the behaviour of other metrics, and survey a variety of related work.Comment: 17 page

    The Complexity of Fully Proportional Representation for Single-Crossing Electorates

    Full text link
    We study the complexity of winner determination in single-crossing elections under two classic fully proportional representation rules---Chamberlin--Courant's rule and Monroe's rule. Winner determination for these rules is known to be NP-hard for unrestricted preferences. We show that for single-crossing preferences this problem admits a polynomial-time algorithm for Chamberlin--Courant's rule, but remains NP-hard for Monroe's rule. Our algorithm for Chamberlin--Courant's rule can be modified to work for elections with bounded single-crossing width. To circumvent the hardness result for Monroe's rule, we consider single-crossing elections that satisfy an additional constraint, namely, ones where each candidate is ranked first by at least one voter (such elections are called narcissistic). For single-crossing narcissistic elections, we provide an efficient algorithm for the egalitarian version of Monroe's rule.Comment: 23 page

    Fair Knapsack

    Full text link
    We study the following multiagent variant of the knapsack problem. We are given a set of items, a set of voters, and a value of the budget; each item is endowed with a cost and each voter assigns to each item a certain value. The goal is to select a subset of items with the total cost not exceeding the budget, in a way that is consistent with the voters' preferences. Since the preferences of the voters over the items can vary significantly, we need a way of aggregating these preferences, in order to select the socially best valid knapsack. We study three approaches to aggregating voters' preferences, which are motivated by the literature on multiwinner elections and fair allocation. This way we introduce the concepts of individually best, diverse, and fair knapsack. We study the computational complexity (including parameterized complexity, and complexity under restricted domains) of the aforementioned multiagent variants of knapsack.Comment: Extended abstract will appear in Proc. of 33rd AAAI 201

    Reallocating Multiple Facilities on the Line

    Full text link
    We study the multistage KK-facility reallocation problem on the real line, where we maintain KK facility locations over TT stages, based on the stage-dependent locations of nn agents. Each agent is connected to the nearest facility at each stage, and the facilities may move from one stage to another, to accommodate different agent locations. The objective is to minimize the connection cost of the agents plus the total moving cost of the facilities, over all stages. KK-facility reallocation was introduced by de Keijzer and Wojtczak, where they mostly focused on the special case of a single facility. Using an LP-based approach, we present a polynomial time algorithm that computes the optimal solution for any number of facilities. We also consider online KK-facility reallocation, where the algorithm becomes aware of agent locations in a stage-by-stage fashion. By exploiting an interesting connection to the classical KK-server problem, we present a constant-competitive algorithm for K=2K = 2 facilities

    Iterative Delegations in Liquid Democracy with Restricted Preferences

    Full text link
    In this paper, we study liquid democracy, a collective decision making paradigm which lies between direct and representative democracy. One main feature of liquid democracy is that voters can delegate their votes in a transitive manner so that: A delegates to B and B delegates to C leads to A delegates to C. Unfortunately, this process may not converge as there may not even exist a stable state (also called equilibrium). In this paper, we investigate the stability of the delegation process in liquid democracy when voters have restricted types of preference on the agent representing them (e.g., single-peaked preferences). We show that various natural structures of preferences guarantee the existence of an equilibrium and we obtain both tractability and hardness results for the problem of computing several equilibria with some desirable properties

    Approximating the MaxCover Problem with Bounded Frequencies in FPT Time

    Full text link
    We study approximation algorithms for several variants of the MaxCover problem, with the focus on algorithms that run in FPT time. In the MaxCover problem we are given a set N of elements, a family S of subsets of N, and an integer K. The goal is to find up to K sets from S that jointly cover (i.e., include) as many elements as possible. This problem is well-known to be NP-hard and, under standard complexity-theoretic assumptions, the best possible polynomial-time approximation algorithm has approximation ratio (1 - 1/e). We first consider a variant of MaxCover with bounded element frequencies, i.e., a variant where there is a constant p such that each element belongs to at most p sets in S. For this case we show that there is an FPT approximation scheme (i.e., for each B there is a B-approximation algorithm running in FPT time) for the problem of maximizing the number of covered elements, and a randomized FPT approximation scheme for the problem of minimizing the number of elements left uncovered (we take K to be the parameter). Then, for the case where there is a constant p such that each element belongs to at least p sets from S, we show that the standard greedy approximation algorithm achieves approximation ratio exactly (1-e^{-max(pK/|S|, 1)}). We conclude by considering an unrestricted variant of MaxCover, and show approximation algorithms that run in exponential time and combine an exact algorithm with a greedy approximation. Some of our results improve currently known results for MaxVertexCover
    corecore