21 research outputs found

    On the Compressive Spectral Method

    Get PDF
    The authors of [Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 6634--6639] proposed sparse Fourier domain approximation of solutions to multiscale PDE problems by soft thresholding. We show here that the method enjoys a number of desirable numerical and analytic properties, including convergence for linear PDEs and a modified equation resulting from the sparse approximation. We also extend the method to solve elliptic equations and introduce sparse approximation of differential operators in the Fourier domain. The effectiveness of the method is demonstrated on homogenization examples, where its complexity is dependent only on the sparsity of the problem and constant in many cases

    On the Compressive Spectral Method

    Full text link

    Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control

    Full text link
    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace. The Koopman operator is an infinite-dimensional linear operator that evolves observable functions of the state-space of a dynamical system [Koopman 1931, PNAS]. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems [Williams et al. 2015, JNLS]. Choosing nonlinear observable functions to form an invariant subspace where it is possible to obtain linear models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis using a new algorithm to determine terms in a dynamical system by sparse regression of the data in a nonlinear function space [Brunton et al. 2015, arxiv]; we show how this algorithm is related to DMD. Finally, we demonstrate how to design optimal control laws for nonlinear systems using techniques from linear optimal control on Koopman invariant subspaces.Comment: 20 pages, 5 figures, 2 code

    Sparse Generalized Multiscale Finite Element Methods and their applications

    Full text link
    In a number of previous papers, local (coarse grid) multiscale model reduction techniques are developed using a Generalized Multiscale Finite Element Method. In these approaches, multiscale basis functions are constructed using local snapshot spaces, where a snapshot space is a large space that represents the solution behavior in a coarse block. In a number of applications (e.g., those discussed in the paper), one may have a sparsity in the snapshot space for an appropriate choice of a snapshot space. More precisely, the solution may only involve a portion of the snapshot space. In this case, one can use sparsity techniques to identify multiscale basis functions. In this paper, we consider two such sparse local multiscale model reduction approaches. In the first approach (which is used for parameter-dependent multiscale PDEs), we use local minimization techniques, such as sparse POD, to identify multiscale basis functions, which are sparse in the snapshot space. These minimization techniques use l1l_1 minimization to find local multiscale basis functions, which are further used for finding the solution. In the second approach (which is used for the Helmholtz equation), we directly apply l1l_1 minimization techniques to solve the underlying PDEs. This approach is more expensive as it involves a large snapshot space; however, in this example, we can not identify a local minimization principle, such as local generalized SVD
    corecore