2 research outputs found

    Jordan Areas and Grids

    Get PDF
    AbstractJordan curves can be used to represent special subsets of the Euclidean plane, either the (open) interior of the curve or the (compact) union of the interior and the curve itself. We compare the latter with other representations of compact sets using grids of points and we are able to show that knowing the length of a rectifiable curve is sufficient to translate from the grid representation to the Jordan curve

    Parameterized Uniform Complexity in Numerics: from Smooth to Analytic, from NP-hard to Polytime

    Full text link
    The synthesis of classical Computational Complexity Theory with Recursive Analysis provides a quantitative foundation to reliable numerics. Here the operators of maximization, integration, and solving ordinary differential equations are known to map (even high-order differentiable) polynomial-time computable functions to instances which are `hard' for classical complexity classes NP, #P, and CH; but, restricted to analytic functions, map polynomial-time computable ones to polynomial-time computable ones -- non-uniformly! We investigate the uniform parameterized complexity of the above operators in the setting of Weihrauch's TTE and its second-order extension due to Kawamura&Cook (2010). That is, we explore which (both continuous and discrete, first and second order) information and parameters on some given f is sufficient to obtain similar data on Max(f) and int(f); and within what running time, in terms of these parameters and the guaranteed output precision 2^(-n). It turns out that Gevrey's hierarchy of functions climbing from analytic to smooth corresponds to the computational complexity of maximization growing from polytime to NP-hard. Proof techniques involve mainly the Theory of (discrete) Computation, Hard Analysis, and Information-Based Complexity
    corecore