19 research outputs found

    Efficient, Safe, and Probably Approximately Complete Learning of Action Models

    Full text link
    In this paper we explore the theoretical boundaries of planning in a setting where no model of the agent's actions is given. Instead of an action model, a set of successfully executed plans are given and the task is to generate a plan that is safe, i.e., guaranteed to achieve the goal without failing. To this end, we show how to learn a conservative model of the world in which actions are guaranteed to be applicable. This conservative model is then given to an off-the-shelf classical planner, resulting in a plan that is guaranteed to achieve the goal. However, this reduction from a model-free planning to a model-based planning is not complete: in some cases a plan will not be found even when such exists. We analyze the relation between the number of observed plans and the likelihood that our conservative approach will indeed fail to solve a solvable problem. Our analysis show that the number of trajectories needed scales gracefully

    Timed Transition Automata as Numerical Planning Domain

    Get PDF
    A general technique for transforming a timed finite state automaton into an equivalent automated planning domain based on a numerical parameter model is introduced. Timed transition automata have many applications in control systems and agents models; they are used to describe sequential processes, where actions are labelling by automaton transitions subject to temporal constraints. The language of timed words accepted by a timed automaton, the possible sequences of system or agent behaviour, can be described in term of an appropriate planning domain encapsulating the timed actions patterns and constraints. The time words recognition problem is then posed as a planning problem where the goal is to reach a final state by a sequence of actions, which corresponds to the timed symbols labeling the automaton transitions. The transformation is proved to be correct and complete and it is space/time linear on the automaton size. Experimental results shows that the performance of the planning domain obtained by transformation is scalable for real world applications. A major advantage of the planning based approach, beside of the solving the parsing problem, is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation

    Reformulation in planning

    Get PDF
    Reformulation of a problem is intended to make the problem more amenable to efficient solution. This is equally true in the special case of reformulating a planning problem. This paper considers various ways in which reformulation can be exploited in planning

    Evolving robot empathy towards humans with motor disabilities through artificial pain generation

    Full text link
    Ā© 2018 the Author(s). In contact assistive robots, a prolonged physical engagement between robots and humans with motor disabilities due to shoulder injuries, for instance, may at times lead humans to experience pain. In this situation, robots will require sophisticated capabilities, such as the ability to recognize human pain in advance and generate counter-responses as follow up emphatic action. Hence, it is important for robots to acquire an appropriate pain concept that allows them to develop these capabilities. This paper conceptualizes empathy generation through the realization of synthetic pain classes integrated into a robot's self-awareness framework, and the implementation of fault detection on the robot body serves as a primary source of pain activation. Projection of human shoulder motion into the robot arm motion acts as a fusion process, which is used as a medium to gather information for analyses then to generate corresponding synthetic pain and emphatic responses. An experiment is designed to mirror a human peer's shoulder motion into an observer robot. The results demonstrate that the fusion takes place accurately whenever unified internal states are achieved, allowing accurate classification of synthetic pain categories and generation of empathy responses in a timely fashion. Future works will consider a pain activation mechanism development

    Generalized Planning as Heuristic Search: A new planning search-space that leverages pointers over objects

    Full text link
    Planning as heuristic search is one of the most successful approaches to classical planning but unfortunately, it does not extend trivially to Generalized Planning (GP). GP aims to compute algorithmic solutions that are valid for a set of classical planning instances from a given domain, even if these instances differ in the number of objects, the number of state variables, their domain size, or their initial and goal configuration. The generalization requirements of GP make it impractical to perform the state-space search that is usually implemented by heuristic planners. This paper adapts the planning as heuristic search paradigm to the generalization requirements of GP, and presents the first native heuristic search approach to GP. First, the paper introduces a new pointer-based solution space for GP that is independent of the number of classical planning instances in a GP problem and the size of those instances (i.e. the number of objects, state variables and their domain sizes). Second, the paper defines a set of evaluation and heuristic functions for guiding a combinatorial search in our new GP solution space. The computation of these evaluation and heuristic functions does not require grounding states or actions in advance. Therefore our GP as heuristic search approach can handle large sets of state variables with large numerical domains, e.g.~integers. Lastly, the paper defines an upgraded version of our novel algorithm for GP called Best-First Generalized Planning (BFGP), that implements a best-first search in our pointer-based solution space, and that is guided by our evaluation/heuristic functions for GP.Comment: Under review in the Artificial Intelligence Journal (AIJ

    The Metric-FF Planning System: Translating "Ignoring Delete Lists" to Numeric State Variables

    Full text link
    Planning with numeric state variables has been a challenge for many years, and was a part of the 3rd International Planning Competition (IPC-3). Currently one of the most popular and successful algorithmic techniques in STRIPS planning is to guide search by a heuristic function, where the heuristic is based on relaxing the planning task by ignoring the delete lists of the available actions. We present a natural extension of ``ignoring delete lists'' to numeric state variables, preserving the relevant theoretical properties of the STRIPS relaxation under the condition that the numeric task at hand is ``monotonic''. We then identify a subset of the numeric IPC-3 competition language, ``linear tasks'', where monotonicity can be achieved by pre-processing. Based on that, we extend the algorithms used in the heuristic planning system FF to linear tasks. The resulting system Metric-FF is, according to the IPC-3 results which we discuss, one of the two currently most efficient numeric planners

    The FF Planning System: Fast Plan Generation Through Heuristic Search

    Full text link
    We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be independent. We introduce a novel search strategy that combines hill-climbing with systematic search, and we show how other powerful heuristic information can be extracted and used to prune the search space. FF was the most successful automatic planner at the recent AIPS-2000 planning competition. We review the results of the competition, give data for other benchmark domains, and investigate the reasons for the runtime performance of FF compared to HSP

    Cooperative Monitoring to Diagnose Multiagent Plans

    Get PDF
    Diagnosing the execution of a Multiagent Plan (MAP) means identifying and explaining action failures (i.e., actions that did not reach their expected effects). Current approaches to MAP diagnosis are substantially centralized, and assume that action failures are inde-pendent of each other. In this paper, the diagnosis of MAPs, executed in a dynamic and partially observable environment, is addressed in a fully distributed and asynchronous way; in addition, action failures are no longer assumed as independent of each other. The paper presents a novel methodology, named Cooperative Weak-Committed Moni-toring (CWCM), enabling agents to cooperate while monitoring their own actions. Coop-eration helps the agents to cope with very scarcely observable environments: what an agent cannot observe directly can be acquired from other agents. CWCM exploits nondetermin-istic action models to carry out two main tasks: detecting action failures and building trajectory-sets (i.e., structures representing the knowledge an agent has about the environ-ment in the recent past). Relying on trajectory-sets, each agent is able to explain its own action failures in terms of exogenous events that have occurred during the execution of the actions themselves. To cope with dependent failures, CWCM is coupled with a diagnostic engine that distinguishes between primary and secondary action failures. An experimental analysis demonstrates that the CWCM methodology, together with the proposed diagnostic inferences, are effective in identifying and explaining action failures even in scenarios where the system observability is significantly reduced. 1
    corecore