7,880 research outputs found

    A mathematical excursion in the isochronic hills

    Get PDF

    Lower Bounds for the Average and Smoothed Number of Pareto Optima

    Get PDF
    Smoothed analysis of multiobjective 0-1 linear optimization has drawn considerable attention recently. The number of Pareto-optimal solutions (i.e., solutions with the property that no other solution is at least as good in all the coordinates and better in at least one) for multiobjective optimization problems is the central object of study. In this paper, we prove several lower bounds for the expected number of Pareto optima. Our basic result is a lower bound of \Omega_d(n^(d-1)) for optimization problems with d objectives and n variables under fairly general conditions on the distributions of the linear objectives. Our proof relates the problem of lower bounding the number of Pareto optima to results in geometry connected to arrangements of hyperplanes. We use our basic result to derive (1) To our knowledge, the first lower bound for natural multiobjective optimization problems. We illustrate this for the maximum spanning tree problem with randomly chosen edge weights. Our technique is sufficiently flexible to yield such lower bounds for other standard objective functions studied in this setting (such as, multiobjective shortest path, TSP tour, matching). (2) Smoothed lower bound of min {\Omega_d(n^(d-1.5) \phi^{(d-log d) (1-\Theta(1/\phi))}), 2^{\Theta(n)}}$ for the 0-1 knapsack problem with d profits for phi-semirandom distributions for a version of the knapsack problem. This improves the recent lower bound of Brunsch and Roeglin

    Enumerating Polytropes

    Full text link
    Polytropes are both ordinary and tropical polytopes. We show that tropical types of polytropes in TPn−1\mathbb{TP}^{n-1} are in bijection with cones of a certain Gr\"{o}bner fan GFn\mathcal{GF}_n in Rn2−n\mathbb{R}^{n^2 - n} restricted to a small cone called the polytrope region. These in turn are indexed by compatible sets of bipartite and triangle binomials. Geometrically, on the polytrope region, GFn\mathcal{GF}_n is the refinement of two fans: the fan of linearity of the polytrope map appeared in \cite{tran.combi}, and the bipartite binomial fan. This gives two algorithms for enumerating tropical types of polytropes: one via a general Gr\"obner fan software such as \textsf{gfan}, and another via checking compatibility of systems of bipartite and triangle binomials. We use these algorithms to compute types of full-dimensional polytropes for n=4n = 4, and maximal polytropes for n=5n = 5.Comment: Improved exposition, fixed error in reporting the number maximal polytropes for n=6n = 6, fixed error in definition of bipartite binomial
    • …
    corecore