540 research outputs found

    On the logical definability of certain graph and poset languages

    Full text link
    We show that it is equivalent, for certain sets of finite graphs, to be definable in CMS (counting monadic second-order logic, a natural extension of monadic second-order logic), and to be recognizable in an algebraic framework induced by the notion of modular decomposition of a finite graph. More precisely, we consider the set F_F\_\infty of composition operations on graphs which occur in the modular decomposition of finite graphs. If FF is a subset of F_F\_{\infty}, we say that a graph is an \calF-graph if it can be decomposed using only operations in FF. A set of FF-graphs is recognizable if it is a union of classes in a finite-index equivalence relation which is preserved by the operations in FF. We show that if FF is finite and its elements enjoy only a limited amount of commutativity -- a property which we call weak rigidity, then recognizability is equivalent to CMS-definability. This requirement is weak enough to be satisfied whenever all FF-graphs are posets, that is, transitive dags. In particular, our result generalizes Kuske's recent result on series-parallel poset languages

    The Isomorphism Relation Between Tree-Automatic Structures

    Get PDF
    An ω\omega-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω\omega-tree-automatic structures. We prove first that the isomorphism relation for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is neither a Σ21\Sigma_2^1-set nor a Π21\Pi_2^1-set

    An Application of the Feferman-Vaught Theorem to Automata and Logics for<br> Words over an Infinite Alphabet

    Full text link
    We show that a special case of the Feferman-Vaught composition theorem gives rise to a natural notion of automata for finite words over an infinite alphabet, with good closure and decidability properties, as well as several logical characterizations. We also consider a slight extension of the Feferman-Vaught formalism which allows to express more relations between component values (such as equality), and prove related decidability results. From this result we get new classes of decidable logics for words over an infinite alphabet.Comment: 24 page

    An Upper Bound on the Complexity of Recognizable Tree Languages

    Get PDF
    The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class (D_n(Σ0_2))\Game (D\_n({\bf\Sigma}^0\_2)) for some natural number n1n\geq 1, where \Game is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2ω2^\omega into the class Δ1_2{\bf\Delta}^1\_2, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ1_2{\bf\Delta}^1\_2

    Logics with rigidly guarded data tests

    Get PDF
    The notion of orbit finite data monoid was recently introduced by Bojanczyk as an algebraic object for defining recognizable languages of data words. Following Buchi's approach, we introduce a variant of monadic second-order logic with data equality tests that captures precisely the data languages recognizable by orbit finite data monoids. We also establish, following this time the approach of Schutzenberger, McNaughton and Papert, that the first-order fragment of this logic defines exactly the data languages recognizable by aperiodic orbit finite data monoids. Finally, we consider another variant of the logic that can be interpreted over generic structures with data. The data languages defined in this variant are also recognized by unambiguous finite memory automata
    corecore