8 research outputs found

    On the Capacity of the Finite Field Counterparts of Wireless Interference Networks

    Full text link
    This work explores how degrees of freedom (DoF) results from wireless networks can be translated into capacity results for their finite field counterparts that arise in network coding applications. The main insight is that scalar (SISO) finite field channels over Fpn\mathbb{F}_{p^n} are analogous to n x n vector (MIMO) channels in the wireless setting, but with an important distinction -- there is additional structure due to finite field arithmetic which enforces commutativity of matrix multiplication and limits the channel diversity to n, making these channels similar to diagonal channels in the wireless setting. Within the limits imposed by the channel structure, the DoF optimal precoding solutions for wireless networks can be translated into capacity optimal solutions for their finite field counterparts. This is shown through the study of the 2-user X channel and the 3-user interference channel. Besides bringing the insights from wireless networks into network coding applications, the study of finite field networks over Fpn\mathbb{F}_{p^n} also touches upon important open problems in wireless networks (finite SNR, finite diversity scenarios) through interesting parallels between p and SNR, and n and diversity.Comment: Full version of paper accepted for presentation at ISIT 201

    Achievable rate region for three user discrete broadcast channel based on coset codes

    Full text link
    We present an achievable rate region for the general three user discrete memoryless broadcast channel, based on nested coset codes. We characterize 3-to-1 discrete broadcast channels, a class of broadcast channels for which the best known coding technique\footnote{We henceforth refer to this as Marton's coding for three user discrete broadcast channel.}, which is obtained by a natural generalization of that proposed by Marton for the general two user discrete broadcast channel, is strictly sub-optimal. In particular, we identify a novel 3-to-1 discrete broadcast channel for which Marton's coding is \textit{analytically} proved to be strictly suboptimal. We present achievable rate regions for the general 3-to-1 discrete broadcast channels, based on nested coset codes, that strictly enlarge Marton's rate region for the aforementioned channel. We generalize this to present achievable rate region for the general three user discrete broadcast channel. Combining together Marton's coding and that proposed herein, we propose the best known coding technique, for a general three user discrete broadcast channel.Comment: A non-additive 3-user discrete broadcast channel is identified for which achievable rate region based on coset codes is analytically proven to be strictly larger than that achievable using unstructured iid codes. This version is submitted to IEEE Transactions on Information Theor
    corecore